1,211 research outputs found

    Time varying solar cycle protons program manual

    Get PDF
    Proton variations in earth radiation belt due to solar cycle - calculation program

    Programming a hillslope water movement model on the MPP

    Get PDF
    A physically based numerical model was developed of heat and moisture flow within a hillslope on a parallel architecture computer, as a precursor to a model of a complete catchment. Moisture flow within a catchment includes evaporation, overland flow, flow in unsaturated soil, and flow in saturated soil. Because of the empirical evidence that moisture flow in unsaturated soil is mainly in the vertical direction, flow in the unsaturated zone can be modeled as a series of one dimensional columns. This initial version of the hillslope model includes evaporation and a single column of one dimensional unsaturated zone flow. This case has already been solved on an IBM 3081 computer and is now being applied to the massively parallel processor architecture so as to make the extension to the one dimensional case easier and to check the problems and benefits of using a parallel architecture machine

    How to cluster in parallel with neural networks

    Get PDF
    Partitioning a set of N patterns in a d-dimensional metric space into K clusters - in a way that those in a given cluster are more similar to each other than the rest - is a problem of interest in astrophysics, image analysis and other fields. As there are approximately K(N)/K (factorial) possible ways of partitioning the patterns among K clusters, finding the best solution is beyond exhaustive search when N is large. Researchers show that this problem can be formulated as an optimization problem for which very good, but not necessarily optimal solutions can be found by using a neural network. To do this the network must start from many randomly selected initial states. The network is simulated on the MPP (a 128 x 128 SIMD array machine), where researchers use the massive parallelism not only in solving the differential equations that govern the evolution of the network, but also by starting the network from many initial states at once, thus obtaining many solutions in one run. Researchers obtain speedups of two to three orders of magnitude over serial implementations and the promise through Analog VLSI implementations of speedups comensurate with human perceptual abilities

    Dynamical Phase Transitions In Driven Integrate-And-Fire Neurons

    Full text link
    We explore the dynamics of an integrate-and-fire neuron with an oscillatory stimulus. The frustration due to the competition between the neuron's natural firing period and that of the oscillatory rhythm, leads to a rich structure of asymptotic phase locking patterns and ordering dynamics. The phase transitions between these states can be classified as either tangent or discontinuous bifurcations, each with its own characteristic scaling laws. The discontinuous bifurcations exhibit a new kind of phase transition that may be viewed as intermediate between continuous and first order, while tangent bifurcations behave like continuous transitions with a diverging coherence scale.Comment: 4 pages, 5 figure

    Reversible skew laurent polynomial rings and deformations of poisson automorphisms

    Get PDF
    A skew Laurent polynomial ring S = R[x(+/- 1); alpha] is reversible if it has a reversing automorphism, that is, an automorphism theta of period 2 that transposes x and x(-1) and restricts to an automorphism gamma of R with gamma = gamma(-1). We study invariants for reversing automorphisms and apply our methods to determine the rings of invariants of reversing automorphisms of the two most familiar examples of simple skew Laurent polynomial rings, namely a localization of the enveloping algebra of the two-dimensional non-abelian solvable Lie algebra and the coordinate ring of the quantum torus, both of which are deformations of Poisson algebras over the base field F. Their reversing automorphisms are deformations of Poisson automorphisms of those Poisson algebras. In each case, the ring of invariants of the Poisson automorphism is the coordinate ring B of a surface in F-3 and the ring of invariants S-theta of the reversing automorphism is a deformation of B and is a factor of a deformation of F[x(1), x(2), x(3)] for a Poisson bracket determined by the appropriate surface

    Preservice Elementary Classroom Teachers’ Attitudes Toward Music in the School Curriculum and Teaching Music

    Get PDF
    The purpose of this study was to determine the attitudes of preservice elementary education classroom teachers toward teaching music and the importance of music in the school curriculum as they prepare to enter the field in an era of high stakes testing, state standards, and accountability. More specifically, responses to twenty-nine statements were used to determine attitudes toward the following three constructs: (a) academic and social benefits of music education, (b) inclusion of music in the curriculum, and (c) comfort in teaching and leading music in the classroom. The survey instrument was a modified version of that used by Lewis (1991); therefore the current study was a modified replication. Results were positive for all the constructs. Post hoc analyses indicated a strong relationship between prior musical experiences and the strength of positive responses

    Insights into Transgenerational Epigenetics from Studies of Ciliates

    Get PDF
    Epigenetics, a term with many meanings, can be broadly defined as the study of dynamic states of the genome. Ciliates, a clade of unicellular eukaryotes, can teach us about the intersection of epigenetics and evolution due to the advantages of working with cultivable ciliate lineages, plus their tendency to express extreme phenotypes such as heritable doublet morphology. Moreover, ciliates provide a powerful model for studying epigenetics given the presence of dimorphic nuclei – a somatic macronucleus and germline micronucleus – within each cell. Here, we exemplify the power of studying ciliates to learn about epigenetic phenomena. We highlight “classical” examples from morphology and physiology including cortical inheritance, mating type determination, and serotype expression. In addition, we detail molecular studies of epigenetic phenomena, including: DNA elimination; alternative processing and unscrambling; and copy number determination. Based on the implications of these studies, we discuss epigenetics as a possible functional mechanism for rapid speciation in ciliates

    Cutting and Shuffling a Line Segment: Mixing by Interval Exchange Transformations

    Full text link
    We present a computational study of finite-time mixing of a line segment by cutting and shuffling. A family of one-dimensional interval exchange transformations is constructed as a model system in which to study these types of mixing processes. Illustrative examples of the mixing behaviors, including pathological cases that violate the assumptions of the known governing theorems and lead to poor mixing, are shown. Since the mathematical theory applies as the number of iterations of the map goes to infinity, we introduce practical measures of mixing (the percent unmixed and the number of intermaterial interfaces) that can be computed over given (finite) numbers of iterations. We find that good mixing can be achieved after a finite number of iterations of a one-dimensional cutting and shuffling map, even though such a map cannot be considered chaotic in the usual sense and/or it may not fulfill the conditions of the ergodic theorems for interval exchange transformations. Specifically, good shuffling can occur with only six or seven intervals of roughly the same length, as long as the rearrangement order is an irreducible permutation. This study has implications for a number of mixing processes in which discontinuities arise either by construction or due to the underlying physics.Comment: 21 pages, 10 figures, ws-ijbc class; accepted for publication in International Journal of Bifurcation and Chao

    Calculations of Neutron Reflectivity in the eV Energy Range from Mirrors made of Heavy Nuclei with Neutron-Nucleus Resonances

    Full text link
    We evaluate the reflectivity of neutron mirrors composed of certain heavy nuclei which possess strong neutron-nucleus resonances in the eV energy range. We show that the reflectivity of such a mirror for some nuclei can in principle be high enough near energies corresponding to compound neutron-nucleus resonances to be of interest for certain scientific applications in non-destructive evaluation of subsurface material composition and in the theory of neutron optics beyond the kinematic limit.Comment: 18 pages, 5 figures, 1 tabl
    • …
    corecore