research

How to cluster in parallel with neural networks

Abstract

Partitioning a set of N patterns in a d-dimensional metric space into K clusters - in a way that those in a given cluster are more similar to each other than the rest - is a problem of interest in astrophysics, image analysis and other fields. As there are approximately K(N)/K (factorial) possible ways of partitioning the patterns among K clusters, finding the best solution is beyond exhaustive search when N is large. Researchers show that this problem can be formulated as an optimization problem for which very good, but not necessarily optimal solutions can be found by using a neural network. To do this the network must start from many randomly selected initial states. The network is simulated on the MPP (a 128 x 128 SIMD array machine), where researchers use the massive parallelism not only in solving the differential equations that govern the evolution of the network, but also by starting the network from many initial states at once, thus obtaining many solutions in one run. Researchers obtain speedups of two to three orders of magnitude over serial implementations and the promise through Analog VLSI implementations of speedups comensurate with human perceptual abilities

    Similar works