11 research outputs found

    Probing the Differential Dynamics of the Monomeric and Dimeric Insulin from Amide-I IR Spectroscopy

    Get PDF
    The monomer–dimer equilibrium for insulin is one of the essential steps in forming the receptor-binding competent monomeric form of the hormone. Despite this importance, the thermodynamic stability, in particular for modified insulins, is quite poorly understood, in part, due to experimental difficulties. This work explores one- and two-dimensional infrared spectroscopy in the range of the amide-I band for the hydrated monomeric and dimeric wild-type hormone. It is found that for the monomer the frequency fluctuation correlation function (FFCF) and the one-dimensional infrared spectra are position sensitive. The spectra of the −CO probes at the dimerization interface (residues Phe24, Phe25, and Tyr26) split and indicate an asymmetry despite the overall (formal) point symmetry of the dimer structure. Also, the decay times of the FFCF for the same −CO probe in the monomer and the dimer can differ by up to 1 order of magnitude, for example, for residue PheB24, which is solvent exposed for the monomer but at the interface for the dimer. The spectroscopic shifts correlate approximately with the average number of hydration waters and the magnitude of the FFCF at time zero. However, this correlation is only qualitative due to the heterogeneous and highly dynamical environment. Based on density functional theory calculations, the dominant contribution for solvent-exposed −CO is found to arise from the surrounding water (∼75%), whereas the protein environment contributes considerably less. The results suggest that infrared spectroscopy is a positionally sensitive probe of insulin dimerization, in particular in conjunction with isotopic labeling of the probe

    Investigating the adsorption of select polar functionalities with the aqueous electrolyte/amorphous silica interface to understand the 'low salinity' effect

    Get PDF
    Low-salinity enhanced oil recovery (EOR) uses low-salinity seawater in the water flooding of sandstone reservoirs to maximise oil yields. Because oil is strongly adsorbed onto mineral surfaces, understanding the interactions involved at the oil/mineral interface, and how to weaken them, is crucial to design more efficient, low-cost EOR. This thesis focuses on the influence of electrolyte concentration on the interaction of alkylammonium (R-NH+3) and alkylcarboxylic acid/carboxylate (R-COOH/COO- functionalities, present in crude-oil, with the amorphous silica (mimic for quartz grains in sandstone)/aqueous electrolyte interface. Both computational (molecular dynamics, MD) and experimental (chemical force mapping atomic force microscopy, CFM-AFM) techniques were used. Firstly (Chapter 3), we tested the inter-operability of the new SPC/Fw water force-field with CHARMM. No significant differences were found between the data generated from SPC/Fw-CHARMM and TIPS3P-CHARMM, therefore the latter, computationally more efficient, was used in Chapters 4-6. The behaviour of the four electrolyte solutions at two concentrations was tested in Chapters 4-5 (NaCl, KCl, CaCl2 and MgCl2 at 0.1 and 0.3 M); interfacial ion and water structuring has been investigated in Chapter 4, while the effect of the electrolytes on the adsorption of R-NH+3) and alkylcarboxylic acid/carboxylate (R-COOH/COO- was explored in Chapter 5. Interfacial ion concentration was greatest in the CaCl2 case, with various long-lived surface-site types involving different combinations of ions identified. CFM-AFM showed a substantial concentration-dependent difference in adhesion for R-NH+3 in CaCl2 and R-COOH/COO- in the divalent ion solutions. The free energy of adsorption for NH+3 CH3 was investigated using metadynamics. Force curves were calculated from the generated free energy profiles. The greatest force is, indeed, observed for one particular surface-site type in CaCl2 solution, prevalent in more concentrated solutions. Finally, a more sophisticated computational model for the experimental AFM tip, a small array of S(CH211NH3+, is presented in Chapter 6, laying the basis for future work

    Synthesis and asymmetric hydrogenation of (3E)-1-benzyl-3-[(2-oxopyridin-1(2H)-yl)methylidene]piperidine-2,6-dione

    Get PDF
    The synthesis of (3E)-1-benzyl-3-[(2-oxopyridin-1(2H)-yl)methylidene]piperidine-2,6-dione 4 from N-benzylglutarimide was achieved in three steps. The asymmetric hydrogenation of 4 gave either the product of partial reduction (10) or full reduction (13), depending on the catalyst which was employed, in high ee in each case. Attempts at asymmetric transfer hydrogenation (ATH) of 4 resulted in formation of a racemic product

    Data for 'Something in the way she moves': the functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI)

    Get PDF
    Protein disulfide isomerase (PDI) has diverse functions in the endoplasmic reticulum as catalyst of redox transfer, disulfide isomerization and oxidative protein folding, as molecular chaperone and in multi-subunit complexes. It interacts with an extraordinarily wide range of substrate and partner proteins, but there is only limited structural information on these interactions. Extensive evidence on the flexibility of PDI in solution is not matched by any detailed picture of the scope of its motion. A new rapid method for simulating the motion of large proteins provides detailed molecular trajectories for PDI demonstrating extensive changes in the relative orientation of its four domains, great variation in the distances between key sites and internal motion within the core ligand-binding domain. The review shows that these simulations are consistent with experimental evidence and provide insight into the functional capabilities conferred by the extensive flexible motion of PDI

    Synthesis and asymmetric hydrogenation of (3E)-1-benzyl-3-[(2-oxopyridin-1(2H)-yl)methylidene]piperidine-2,6-dione

    Get PDF
    The synthesis of (3E)-1-benzyl-3-[(2-oxopyridin-1(2H)-yl)methylidene]piperidine-2,6-dione 4 from N-benzylglutarimide was achieved in three steps. The asymmetric hydrogenation of 4 gave either the product of partial reduction (10) or full reduction (13), depending on the catalyst which was employed, in high ee in each case. Attempts at asymmetric transfer hydrogenation (ATH) of 4 resulted in formation of a racemic product

    Testing the inter-operability of the CHARMM and SPC/Fw force fields for conformational sampling

    No full text
    One of the challenges in the area of molecular simulation of biointerfaces is to ensure that the interatomic potentials used to describe such interfaces capture the essential chemistry and physics of the system. Here, we report the conformational testing of the inter-operability of the CHARMM and SPC/Fw force fields, the compatibility of which is essential for successful incorporation of a description of biomolecules into current biomineralisation force fields. The effect of the new water model, SPC/Fw, on the conformational equilibrium of two contrasting exemplar tripeptide sequences, RGD and SPT, as described by the CHARMM force field, has been probed by the analysis of results generated from replica-exchange molecular dynamics simulations. We compare the ensemble of conformational states generated from the CHARMM-SPC/Fw force fields with those obtained from the more typical CHARMM-TIPS3P combination. Analysis shows that the findings from the two force field combinations compare very favourably for equilibrium structure determination for both peptides

    The Role of Water in the Stability of Wild-type and Mutant Insulin Dimers

    No full text
    Insulin dimerization and aggregation play important roles in the endogenous delivery of the hormone. One of the important residues at the insulin dimer interface is Phe B24 , which is an invariant aromatic anchor that packs toward its own monomer inside a hydrophobic cavity formed by Val B12 , Leu B15 , Tyr B16 , Cys B19 , and Tyr B26 . Using molecular dynamics and free-energy simulations within explicit solvent, the structural and dynamical consequences of mutations of Phe at position B24 to glycine (Gly), alanine (Ala), and d -Ala and the des-PheB25 variant are quantified. Consistent with experiments, it is found that the Gly and Ala modifications lead to insulin dimers with reduced stability by 4 and 5 kcal/mol from thermodynamic integration and 4 and 8 kcal/mol from results using molecular mechanics-generalized Born surface area, respectively. Given the experimental difficulties to quantify the thermodynamic stability of modified insulin dimers, such computations provide a valuable complement. Interestingly, the Gly mutant exists as a strongly and a weakly interacting dimer. Analysis of the molecular dynamics simulations shows that this can be explained by water molecules that replace direct monomer-monomer H-bonding contacts at the dimerization interface involving residues B24 to B26. It is concluded that such solvent molecules play an essential role and must be included in future insulin dimerization studies

    New sesquiterpenoid isonitriles from three species of phyllidid nudibranchs

    Get PDF
    Chemical investigation of the two nudibranch species Phyllidia ocellata and Phyllidiella pustulosa collected in Queensland, Australia, provided new stereoisomers of 4-isocyano-9-amorphene (1) and of 10-isocyano-4-amorphene (2), respectively. A specimen of Phyllidia picta collected from Bali, Indonesia, contained the axane sesquiterpenoids pictaisonitrile-1 3 and pictaisonitrile-2 4. The planar structures were elucidated using 1D and 2D NMR spectroscopy, while relative configurations were established using NOESY correlations, coupling constant data, and comparison with literature data

    Low-Dose ATG/GCSF in Established Type 1 Diabetes: A Five-Year Follow-up Report.

    No full text
    Previously, we demonstrated low-dose antithymocyte globulin (ATG) and granulocyte colony-stimulating factor (GCSF) immunotherapy preserved C-peptide for 2 years in a pilot study of patients with established type 1 diabetes (n = 25). Here, we evaluated the long-term outcomes of ATG/GCSF in study participants with 5 years of available follow-up data (n = 15). The primary end point was area under the curve (AUC) C-peptide during a 2-h mixed-meal tolerance test. After 5 years, there were no statistically significant differences in AUC C-peptide when comparing those who received ATG/GCSF versus placebo (P = 0.41). A modeling framework based on mean trajectories in C-peptide AUC over 5 years, accounting for differing trends between groups, was applied to recategorize responders (n = 9) and nonresponders (n = 7). ATG/GCSF reponders demonstrated nearly unchanged HbA1c over 5 years (mean [95% CI] adjusted change 0.29% [-0.69%, 1.27%]), but the study was not powered for comparisons against nonresponders 1.75% (-0.57%, 4.06%) or placebo recipients 1.44% (0.21%, 2.66%). These data underscore the importance of long-term follow-up in previous and ongoing phase 2 trials of low-dose ATG in recent-onset type 1 diabetes
    corecore