184 research outputs found

    How do psychiatrists in India construct their professional identity? A critical literature review

    Get PDF
    Psychiatric practice in India is marked by an increasing gulf between largely urban-based mental health professionals and a majority rural population. Based on the premise that any engagement is a mutually constructed humane process, an understanding of the culture of psychiatry including social process of local knowledge acquisition by trainee psychiatrists is critical. This paper reviews existing literature on training of psychiatrists in India, the cultural construction of their professional identities and autobiographical refections. The results reveal a scarcity of research on how identities, knowledge, and values are constructed, contested, resisted, sustained, and operationalized through practice. This paper hypothesizes that psychiatric training and practice in India continues to operate chiefy in an instrumental fashion and bears a circular relationship between cultural, hierarchical training structures and patient–carer concerns. The absence of interpretative social science training generates a professional identity that predominantly focuses on the patient and his/her social world as the site of pathology. Infrequent and often superfuous critical cultural refexivity gained through routine clinical practice further alienates professionals from patients, caregivers, and their own social landscapes. This results in a peculiar brand of theory and practice that is skewed toward a narrow understanding of what constitutes suffering. The authors argue that such omissions could be addressed through nuanced ethnographies on the professional development of psychiatrists during postgraduate training, including the political economies of their social institutions and local cultural landscapes. Further research will also help enhance culturally sensitive epistemology and shape locally responsive mental health training programs. This is critical for majority rural Indians who place their trust in State biomedical care

    The indentation response of Nickel nano double gyroid lattices

    Get PDF
    The indentation response of Nickel nano double gyroid films has been measured using a Berkovich nanoindenter and the effective mechanical properties of the Ni double gyroid lattices inferred via a multi-scale finite element analysis. The 1μm thick double gyroid films were manufactured by block copolymer self-assembly followed by electrodeposition of the Ni resulting in two interpenetrating single gyroids of opposite chirality, an overall relative density of 38% and a cell size of about 45 nm. The measured hardness was ∼0.6 GPa with no discernable indentation size effect. A multi-scale finite element (FE) analysis revealed that the uniaxial compressive strength is approximately equal to the hardness for this compressible lattice. Thus, the 38% relative density Ni double gyroid has a strength equal to or greater than the strongest fully dense bulk Ni alloys. The FE calculations revealed that this was a consequence of that fact that the Ni in the 13 nm gyroid struts was essentially dislocation free and had a strength of about 5.7 GPa, i.e. approaching the theoretical strength value of Ni. The measurements and calculations reported here suggest that in spite of the nano gyroids having a bending-dominated topology they attain strengths higher than those reported for stretching-dominated micron scale lattice materials made via 3D printing. We thus argue that relatively fast and easy self-assembly processes are a competitive alternative to 3D printing manufacture methods for making high strength lattice materials

    Surface instabilities in shock loaded granular media

    Get PDF
    © 2017 Elsevier Ltd The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker–Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.he work was supported by the Defense Advanced Projects Agency under grant number W91CRB-11-1-0005 (Program manager, Dr. J. Goldwasser)

    The effect of matrix shear strength on the out-of-plane compressive strength of CFRP cross-ply laminates

    Get PDF
    © 2018 Elsevier Ltd The failure mechanism of ‘indirect tension’ is explored for cross-ply IM7/8552 carbon fibre/epoxy laminates subjected to quasi-static, out-of-plane compressive loading. The sensitivity of compressive response to strain rate and to the state of cure is measured, motivated by the hypothesis that the out-of-plane compressive strength is sensitive to the matrix shear strength. A pressure-sensitive film is placed between specimen and loading platen, and reveals that a shear lag zone of reduced compressive traction exists at the periphery of the specimen, giving rise to a size effect in compressive strength. The width of the shear lag zone reduces with increasing shear strength of the matrix. The laminates fail by the indirect tension mechanism: out-of-plane compressive loading generates tension in the fibre direction for each ply and ultimately induces fibre tensile failure. Finite element (FE) simulations and an analytical model are developed to account for the effect of matrix shear strength, specimen geometry, and strain rate on the out-of-plane compressive strength. Both the FE simulations and the analytical model suggest a recipe for increasing the through-thickness compressive strength

    A constitutive model for cytoskeletal contractility of smooth muscle cells

    Get PDF
    The constitutive model presented in this article aims to describe the main bio-chemo-mechanical features involved in the contractile response of smooth muscle cells, in which the biochemical response is modelled by extending the four-state Hai–Murphy model to isotonic contraction of the cells and the mechanical response is mainly modelled based on the phosphorylation-dependent hyperbolic relation between isotonic shortening strain rate and tension. The one-dimensional version of the model is used to simulate shortening-induced deactivation with good agreement with selected experimental measurements. The results suggest that the Hai–Murphy biochemical model neglects the strain rate effect on the kinetics of cross-bridge interactions with actin filaments in the isotonic contractions. The two-dimensional version and three-dimensional versions of the model are developed using the homogenization method under finite strain continuum mechanics framework. The two-dimensional constitutive model is used to simulate swine carotid media strips under electrical field stimulation, experimentally investigated by Singer and Murphy, and contraction of a hollow airway and a hollow arteriole buried in a soft matrix subjected to multiple calcium ion stimulations. It is found that the transverse deformation may have significant influence on the response of the swine carotid medium. In both cases, the orientation of the maximal value of attached myosin is aligned with the orientation of maximum principal stress

    Ptch2/Gas1 and Ptch1/Boc differentially regulate Hedgehog signalling in murine primordial germ cell migration.

    Get PDF
    Gas1 and Boc/Cdon act as co-receptors in the vertebrate Hedgehog signalling pathway, but the nature of their interaction with the primary Ptch1/2 receptors remains unclear. Here we demonstrate, using primordial germ cell migration in mouse as a developmental model, that specific hetero-complexes of Ptch2/Gas1 and Ptch1/Boc mediate the process of Smo de-repression with different kinetics, through distinct modes of Hedgehog ligand reception. Moreover, Ptch2-mediated Hedgehog signalling induces the phosphorylation of Creb and Src proteins in parallel to Gli induction, identifying a previously unknown Ptch2-specific signal pathway. We propose that although Ptch1 and Ptch2 functionally overlap in the sequestration of Smo, the spatiotemporal expression of Boc and Gas1 may determine the outcome of Hedgehog signalling through compartmentalisation and modulation of Smo-downstream signalling. Our study identifies the existence of a divergent Hedgehog signal pathway mediated by Ptch2 and provides a mechanism for differential interpretation of Hedgehog signalling in the germ cell niche

    Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC

    Get PDF
    We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Regulatory control of DNA end resection by Sae2 phosphorylation

    Get PDF
    DNA end resection plays a critical function in DNA double-strand break repair pathway choice. Resected DNA ends are refractory to end-joining mechanisms and are instead channeled to homology-directed repair. Using biochemical, genetic, and imaging methods, we show that phosphorylation of Saccharomyces cerevisiae Sae2 controls its capacity to promote the Mre11-Rad50-Xrs2 (MRX) nuclease to initiate resection of blocked DNA ends by at least two distinct mechanisms. First, DNA damage and cell cycle-dependent phosphorylation leads to Sae2 tetramerization. Second, and independently, phosphorylation of the conserved C-terminal domain of Sae2 is a prerequisite for its physical interaction with Rad50, which is also crucial to promote the MRX endonuclease. The lack of this interaction explains the phenotype of rad50S mutants defective in the processing of Spo11-bound DNA ends during meiotic recombination. Our results define how phosphorylation controls the initiation of DNA end resection and therefore the choice between the key DNA double-strand break repair mechanisms
    corecore