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A constitutive model for
cytoskeletal contractility
of smooth muscle cells
Tao Liu

Division of Materials, Mechanics and Structures, Department of Civil

Engineering, Faculty of Engineering, University of Nottingham,

Nottingham NG7 2RD, UK

The constitutive model presented in this article

aims to describe the main bio-chemo-mechanical

features involved in the contractile response of smooth

muscle cells, in which the biochemical response is

modelled by extending the four-state Hai–Murphy

model to isotonic contraction of the cells and the

mechanical response is mainly modelled based on

the phosphorylation-dependent hyperbolic relation

between isotonic shortening strain rate and tension.

The one-dimensional version of the model is used to

simulate shortening-induced deactivation with good

agreement with selected experimental measurements.

The results suggest that the Hai–Murphy biochemical

model neglects the strain rate effect on the kinetics

of cross-bridge interactions with actin filaments

in the isotonic contractions. The two-dimensional

version and three-dimensional versions of the model

are developed using the homogenization method

under finite strain continuum mechanics framework.

The two-dimensional constitutive model is used to

simulate swine carotid media strips under electrical

field stimulation, experimentally investigated by

Singer and Murphy, and contraction of a hollow

airway and a hollow arteriole buried in a soft matrix

subjected to multiple calcium ion stimulations. It

is found that the transverse deformation may have

significant influence on the response of the swine

carotid medium. In both cases, the orientation of the

maximal value of attached myosin is aligned with the

orientation of maximum principal stress.

1. Introduction
As the contractile component of hollow organs such

as the intestines, the airways and blood vessels,

2014 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/3.0/, which permits unrestricted use, provided the original author and

source are credited.
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smooth muscle cells react to stimulations, such as electrical field and calcium ion (Ca2+)

transients, by contracting the hollow organs. Abnormal contractility of smooth muscle cells is an

important cause of many diseases, such as asthma, incontinence and hypertension. For example,

airway hyper-responsiveness is a characteristic of asthma and generally ascribed to the excessive

contraction of airway smooth muscle cells. In past decades, significant progress has been made

in developing experimental techniques to measure mechanical responses, mainly contraction, of

smooth muscle cells or smooth muscle cell-based tissues under various conditions. In a recent

development, Tan et al. [1] have measured the distribution of force exerted by a smooth muscle

cell by seeding the smooth muscle cell on a bed of poly(dimethylsiloxane) (PDMS) microposts

and determining the deflections of the posts. Alford et al. [2] have used vascular muscular thin

film method to measure the dynamic stress generation during contraction of microfabricated

tissues of vascular smooth muscle with differing tissue and cell-level architecture. Owing to

the complexity of the problem, most experimental investigations focus on details of individual

elements regulating the contractility of smooth muscle cells, but an integrative understanding of

how the different regulatory elements function together remains elusive. Hence, interpretation of

experimental measurements at cell or tissue level remains a challenge.

A number of constitutive/mathematical models have been developed to simulate contractile

response of a cell, aiming to interpret experimental observations. Appropriate constitutive models

should be capable of integrating key biochemical features into the mechanical response of a

cell. Earlier attempts to model cell contractility have simply prescribed a thermal strain to cell

by regarding a cell as an isotropic elastic continuum [3] or a discrete set of elastic filaments

[4]. Biochemical features of the cell under stimulation are neglected. Deshpande et al. [5] have

developed a generalized bio-chemo-mechanical modelling framework that accounts for the

dynamic formulation of stress fibres and the cross-bridge cycling between the actin and the

myosin filament that generates the tension. The capability of the modelling framework has

been demonstrated through reasonable correlation between experimental measurements and

predications for the contractile responses of smooth muscle cells, fibroblasts and mesenchymal

stem cells on a bed of PDMS microposts [6], the formation of stress fibres perpendicular to the

direction of cyclic stretching [7] as well as the response of cells to the stiffness of an elastic

substrate [8]. The responses and remodelling of a three-dimensional cytoskeletal network in

response to compression [9], shear [10] and in situ dynamic loading [11] have been studied

numerically, based on the modelling framework.

To develop bio-chemo-mechanical-based constitutive models for smooth muscle cells, a

number of attempts have been made using the four-state Hai–Murphy model [12] to describe the

kinetics of myosin phosphorylation and cross-bridge interactions with thin filaments. Notably

among these, the model of Bursztyn et al. [13] describes the intracellular Ca2+ concentration and

stress produced by a cell in response to the depolarization of the cell membrane by considering

three Ca2+ control mechanisms: voltage-operated Ca2+ channels, Ca2+ pumps and Na+/Ca2+

exchangers. More recently, Murtada et al. [14–16] have developed a model considering the relative

sliding between myosin and actin filaments in force production based on Hill’s three-element

model as well as the dispersion effects of contractile fibres. Stalhand et al. [17] have developed a

three-dimensional modelling framework in which a free-energy function is proposed as the sum

of mechanical energy, chemical kinetics as well as the Ca2+ concentration and the Hai–Murphy

model is included in the developed evolution law as a special case. As the Hai–Murphy model

is a biochemical model for isometric contraction of smooth muscles, these models may mainly

be applicable for simulating isometric responses. The applicability of these models to isotonic

contractions remains questionable. In this paper, we show that the Hai–Murphy model neglects

the effect of strain rate on the kinetics of cross-bridge interactions with actin filaments for isotonic

contraction of smooth muscles.

In addition to the above-mentioned attempts, Wang et al. [18] and Maggio et al. [19] have

developed a modified Hai–Murphy model to simulate non-isometric contractions by integrating

Huxley’s sliding filament theory of muscle contraction with the Hai–Murphy model. In the

model, a variable representing the distance along the thin filament to a binding site from

 on February 16, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


3

rspa.royalsocietypublishing.org
P
ro
c.
R
.So

c.
A
470:20130771

...................................................

the cross-bridge as in a Huxley cross-bridge model has been incorporated into the four-state

Hai–Murphy model to form a group of partial differential equations. The model has been used

to simulate airway smooth muscles and uterine smooth muscles, respectively, with reasonable

correlation to experiments.

The aim of this article was to develop a constitutive model that is capable of describing the

bio-chemo-mechanical features in contractility of smooth muscle cells. The article is organized as

follows. Section 2 gives brief description on the four-state Hai–Murphy model. Section 3 presents

a constitutive model for one-dimensional idealized smooth muscle cells, which is used to simulate

shortening-induced deactivation in §5. The model is extended to two-dimensional smooth muscle

cells in §4. The two-dimensional constitutive model is used to simulate swine carotid media strips

under electrical field stimulation and contraction of a hollow airway and a hollow arteriole buried

in a soft matrix subjected to multiple Ca2+ stimulations in §6.

2. Synopsis of the Hai–Murphy model
The key bio-chemo-mechanical process involved in contractile response of smooth muscles is

described in the electronic supplementary material, appendix A. Smooth muscles take 30 times

longer to contract and relax than does skeletal muscle and can maintain the same contractile

tension for prolonged periods at less than 1% of the energy cost. Part of the striking energy

economy of smooth muscles is that the steady-state force is maintained at relatively low levels

of myosin light chain phosphorylation and cross-bridge cycling rates, which has been termed

the ‘latch states’ [12]. Hai & Murphy [12] developed a four-state model for isometric contraction

of a smooth muscle to describe the kinetics of the fractions of myosin in the different states, as

shown in figure 1. The four-state model postulates the coexistence of latch bridge and

cross-bridge, in which the latch bridge is generated by the dephosphorylation of attached

phosphorylated cross-bridges. The model could be described via a set of ordinary differential

equations as

d[M]

dt
= −k1[M] + k2[MP] + k7[AM], (2.1)

d[MP]

dt
= k4[AMP] + k1[M] − (k2 + k3)[MP], (2.2)

d[AMP]

dt
= k3[MP] + k6[AM] − (k4 + k5)[AMP] (2.3)

and
d[AM]

dt
= k5[AMP] − (k6 + k7)[AM], (2.4)

where, as shown in figure 1, [M], [MP], [AMP] and [AM] are non-negative and non-

dimensional quantities with [M] + [MP] + [AMP] + [AM] = 1, representing fractions of free

unphosphorylated, phosphorylated, attached dephosphorylated and attached phosphorylated

myosin, respectively, and k1, . . . , k7 are the rate constants which can be obtained by fitting

the model behaviour against experimental data [12]. The value of attached cross-bridges,

η = [AM] + [AMP], can be related to isometric contraction stress, σo, of a smooth muscle via

σo =
σmax

[η]max
η, (2.5)

where σmax is the maximal tension corresponding to the maximal number of attached cross-

bridges [η]max = max([AMP] + [AM]) that is permitted by biochemistry [20]. Among all rate

constants, k1 and k6 are the only Ca2+-regulated rate constants. Based on the assumption that

the affinities of myosin light chain kinase and myosin light chain phosphatase for detached and

attached cross-bridges are similar, k1 = k6 and k2 = k5 were assumed for data fitting [12].
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Figure 1. Schematic diagram of four-state biochemical model for the contraction of smooth muscle in response to calcium

stimuli: free unphosphorylated myosin and formulation of actin ilament (a), detached phosphorylated myosin which is in the

high-energy position (b), attached phosphorylated myosin (c), attached unphosphorylated myosin (d). The solid arrows with

rate constants, k1, . . . , k7, are used in the original Hai–Murphymodel for isometric contraction of a smoothmuscle. The dashed

arrows represent the additional processes introduced in the paper to extend the Hai–Murphy model for isotonic contraction of

a smooth muscle. (Online version in colour.)

3. Constitutive model for one-dimensional smooth muscle cells
We first analyse an idealized one-dimensional smooth muscle cell, i.e. all acto-myosin stress fibres

are aligned along a same direction, contracted owing to the rise in the intracellular calcium ion

level.

(a) Relation of active contraction stress versus strain rate

Numerous studies, including Murphy [21] and Bates et al. [22], have demonstrated that the

relationship of isotonic shortening velocity and tension of smooth muscle can be described by a

hyperbolic curve as the ‘characteristic equation’ of Hill [23]. However, unlike skeletal muscle, the

stress–velocity relation of smooth muscle is not unique and exhibits a family of phosphorylation-

dependent curves [24]. Following Hill’s equation and considering the effect of phosphorylation

of myosin (see the electronic supplementary material, appendix B), the relation between active

contraction stress σ and strain rate ε̇ of the smooth muscle cell under isotonic contraction can be

given as

σ

σo
=

1 + (k10/ξ )(ε̇/ε̇o)

1 − (1/ξ )(ε̇/ε̇o)
if −

ξ

k10
≤

ε̇

ε̇o
≤ 0, (3.1)
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where k10 is a positive rate constant, ε̇o a reference strain rate, ε̇o > 0 and ξ is the phosphorylation

level of myosin, ξ = [MP] + [AMP]. The sign convention of solid mechanics is adopted here, i.e.

negative for shortening and compression and positive for lengthening and tension. The maximum

shortening strain rate, ε̇max, i.e. the strain rate corresponding to unloaded contraction velocity, can

be calculated by letting σ = 0 in equation (3.1), i.e.

ε̇max = −
ξεo

k10
(3.2)

which dictates linear relationship between the maximum shortening strain rate and myosin

phosphorylation. The maximum shortening strain rate is an intrinsic property of a smooth

muscle [25] and the measurement of cross-bridge cycling rate [26]. Experimental studies

have demonstrated that the maximum shortening strain rate is proportional to cross-bridge

phosphorylation, ξ , in many types of smooth muscles with different types of activation and

at different temperatures [26]. Equation (3.2) is consistent with the general trend observed

in experiments.

As examples, figure 2a,b shows a comparison of experimental results and predictions via

equations (3.1) and (3.2) on the relationship of active contraction stress and shortening strain

rate, at selected values of ξ , for swine carotid media [21] and bovine tracheal smooth muscle [27],

respectively, with constants k10 and νo calibrated against experimental results. The corresponding

predictions on the relation of maximum contraction strain rate and phosphorylation of myosin

are compared with experimental results in figure 2c. The agreement between predictions via

equations (3.1) and (3.2) and experimental results is very good in all these examples.

When the shortening strain rate is equal to or exceeds the maximum shortening strain rate, the

cell is under unloaded state, i.e.

σ

σo
= 0 if

ε̇

ε̇o
≤ −

ξ

k10
(3.3)

When the smooth muscle cell is under eccentric contraction, i.e. ε̇ > 0, following the experimental

findings of Hanks & Stephens [28], the relationship of active contraction stress and contraction

strain rate is described as a straight line with the same slope as the hyperbolic relationship at a

strain rate of zero, given as (see electronic supplementary material, appendix B),

σ

σo
= 1 +

(1 + k10)

ξ

ε̇

εo
if

ε̇

ε̇o
> 0. (3.4)

The load capacity of a smooth muscle under tension can be obtained via a quick stretch test.

According to Dillon et al. [29], the yield point for smooth muscle strips obtained from media of

swine carotid arteries is 1.6 times the isometric stress σo under steady-state conditions. However,

as the focus of this paper is related to isotonic contraction of smooth muscle cells, yielding of

smooth muscle cell under tension is not included in the model.

(b) Biochemical model

As mentioned in §2, the four-state Hai–Murphy model describes the biochemical process for

isometric contraction. As shortening velocity of the smooth muscle cell increases from isometric

state, it is possible that more attached cross-bridges become detached in order to reduce force

production, i.e. detachment rates increase for both latch bridge and cross-bridge, as schematically

shown in figure 1. Therefore, higher detachment rates need to be used in modelling in order

to reflect the influence of isotonic shortening. Barany [25] has investigated the relation between

ATPase activity of myosin and maximum velocity of muscle shortening via experiments on a large

variety of muscles, including skeletal muscles and smooth muscles. It has been found that ATPase

activity of myosin correlates proportionally with the maximum velocity of muscle contraction.

Even though the original experiments of Barany [25] were conducted to relate the velocity of
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Figure 2. Comparison of predictions and measured responses for smooth muscles. Normalized active stress as a function of

normalized shortening strain rate for swine carotid media [21] (a) and bovine tracheal smooth muscle [27] (b) at selected

phosphorylation levels and normalized maximal shortening strain rate as a function of phosphorylation (c). The predictions

are obtained with k10 = 0.3 s−1 and εo = 0.03 s−1 for swine carotid media or k10 = 0.31 s−1 and εo = 0.105 s−1 for bovine

tracheal smooth muscle.

shortening of unloaded muscle to ATPase activity of myosin, it appears that the ATPase activity

of myosin is related to the velocity of shortening with and without load. ATPase activity of myosin

is the direct reflection of ATP-binding, hydrolysis and phosphate release in the cycle of attachment

and detachment of cross-bridges. Therefore, the rate constants of myosin detachment increased
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due to isotonic shortening should be proportional to shortening velocity or strain rate, namely for

ε̇max ≤ ε̇ ≤ 0, the biochemical model can be rewritten as

d[M]

dt
= −k1[M] + k2[MP] +

(

k7 − k9
k10

ξ

ε̇

ε̇o

)

[AM], (3.5)

d[MP]

dt
=

(

−k8
k10

ξ

ε̇

ε̇o
+ k4

)

[AMP] + k1[M] − (k2 + k3)[MP], (3.6)

d[AMP]

dt
= k3[MP] + k6[AM] −

(

k4 + k5 − k8
k10

ξ

ε̇

ε̇o

)

[AMP] (3.7)

and
d[AM]

dt
= k5[AMP] −

(

k6 + k7 − k9
k10

ξ

ε̇

ε̇o

)

[AM] (3.8)

where k8, k9 are rate constants. For isometric contraction, i.e. ε̇ = 0, equations (3.5)–(3.8) are

equivalent to the Hai–Murphy model. For contraction with the maximum shortening strain rate,

i.e. ε̇ = ε̇max, detachment rates increase to (k7 + k9) for latch bridges and (k4 + k8) for cross-bridges,

respectively. The model described in equations (3.5)–(3.8) implicates that the steady-state level of

phosphorylation is mainly governed by k1 and k2, i.e.

ξ =
k1

k1 + k2
. (3.9)

For eccentric contraction of smooth muscle cells, i.e. ε̇ > 0, a more complicated biochemical

reaction such as stretch-induced calcium release may be involved [30]. As the focus of this paper

is isotonic contraction of smooth muscle cells, for simplicity, the Hai–Murphy model as described

in equations (2.1)–(2.4) is used for eccentric contraction. In §5, the above-mentioned active stress–

velocity relation and biochemical model are used to simulate shortening-induced deactivation for

one-dimensional smooth muscle.

4. Constitutivemodel for two-dimensional cytoskeleton of smoothmuscle cells
We now analyse an idealized two-dimensional smooth muscle cell, i.e. stress fibres can form in

any direction in two-dimensional space with equal probability.

(a) The model

Consider a periodic media with m stress fibres buried in a matrix with material property equal

to passive behaviour of the cytoskeletal network in each smallest periodic unit cell, namely

representative volume element (RVE). The RVE is a microdisc with out-of-plane thickness δ and

in-plane radius R for two-dimensional problems, as schematically shown in figure 3. For the three-

dimensional problem, the RVE is a microsphere with radius R, see the electronic supplementary

material, appendix C. In this section, we use bold letters to represent vector/tensor. The

longitudinal axis of the kth, k ∈ [1, m], stress fibre is aligned along the radius of the RVE with

unit vector n
(k)
0 = n

(k)
0j ej in the initial configuration and n(k) = n

(k)
j ej in the current configuration,

where ej is the basis vector in Cartesian coordinates with j = 1 and 2 for two-dimensional space

or j = 1, 2 and 3 for three-dimensional space based on the indicial notation. The time derivative of

the macroscopic deformation gradient F̄ can be related to the microscopic spatial velocity field v

and the local coordinate Y at initial configuration via volume average

˙̄Fij =
1

V

∫
V

ḞijdV =
1

V

∫
V

∂vi

∂Yj
dV, (4.1)

where the superposed dot represents the time derivative and the superposed bar the macroscopic

quantities, F is the microscopic deformation gradient tensor, Fij = ∂yi/∂Yj, where y is the local

coordinate at the current configuration and V is the initial volume of an RVE. By definitions of F
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Figure 3. Two-dimensional representative volume element (RVE) used to analyse a two-dimensional cytoskeleton network in

a smooth muscle cell. (Online version in colour.)

and F̄, we have

λ(k)n
(k)
i = Fijn

(k)
0j = F̄ijn

(k)
0j (summation over j), (4.2)

where λ(k) denotes the ratio of the current to initial length for the kth stress fibre, λ(k) = |Fn
(k)
0 | =

|F̄n
(k)
0 |. The macroscopic nominal stress S̄ can be defined as the volume average of the microscopic

nominal stress S

S̄ij =
1

V

∫
V

sijdV. (4.3)

If both the microscopic stress and velocity field are admissible, then it follows that the macroscopic

power density can be related to the volume average of the total power at microscale [31].

˙̄FijS̄ji =
1

V

∫
V

ḞijsjidV (4.4)

Let σ̄ and D̄ denote macroscopic Cauchy stress and rate of deformation, respectively. As

mentioned by Nemat-Nasser [31], in the general case, volume average does not hold to

relate macroscopic Cauchy stress and rate of deformation to the corresponding quantities

at microscale based on the stress measure in equation (4.3). However, σ̄ and D̄ can be

calculated as

D̄ij =
1

2
(L̄ij + L̄ji) and σ̄ij =

1

J̄
F̄ilS̄lj (summation over l), (4.5)

respectively, where L̄ is the microscopic spatial velocity gradient, L̄ij =
˙̄FilF̄

−1
lj and J̄ = det(F̄). Using

compatibility, the true strain rate ε̇(k) along the axis of the kth stress fibre reads

ε̇(k) = D̄ijn
(k)
i n

(k)
j (summation over i and j). (4.6)

Hence, the strain and stress within the volume of the kth stress fibre, Ω (k), in the current

configuration are constant. By equilibrium, the local Cauchy stress, σ , in the RVE reads

σij =

{

σ (k)n
(k)
i n

(k)
j + σpij y ∈ Ω (k)

σpij in matrix,
(4.7)
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where σ (k) is the Cauchy stress for the kth stress fibre and σ p is the local Cauchy stress in the

matrix. The local nominal stress, s, can be calculated, via s = JF−1
σ and s(k) = σ (k)/λ(k), as

sij =

⎧

⎨

⎩

Js(k)n
(k)
0i n

(k)
j + spij y ∈ V(k)

spij in matrix,
(4.8)

where s(k) and sp = JF−1
σ p is the local nominal stress in the kth stress fibre and matrix, respectively,

and J = det(F). The macroscopic nominal stress can be calculated from equation (4.3) as

S̄ij = J̄
m

∑

k=1

c(k)s(k)n
(k)
0i n

(k)
j + spij, (4.9)

where c(k) is the volume fraction of kth stress fibre in the current configuration. Equation (4.9)

satisfies the relation defined in equation (4.4). The macroscopic Cauchy stress can be calculated

from equation (4.5) as

σ̄ij =

m
∑

k=1

c(k)σ (k)n
(k)
i n

(k)
j + σpij. (4.10)

For well-developed stress fibres, i.e. m → ∞, we have

σ̄ij =
1

π

∫π/2

−π/2
σninjdθ + σpij (for two-dimensional), (4.11)

where angle θ is defined in figure 3 and the active contraction stress σ could be related to strain

rate ε̇ via equations (3.1), (3.3) and (3.4).

The passive elasticity, provided mainly by intermediate filaments, nuclei and cell membrane,

need to be included in the contractile response of a cell. As shown in equation (4.11), additive

decomposition of the active stress and passive stress is assumed as the stress fibres act in parallel

with intermediate filaments and the cell membrane. Here, for the sake of simplicity, the passive

component of a cell is assumed to behave like a neo-Hookean solid. Following Ogden [32], we

consider the multiplicative decomposition

F̄ij = J̄1/3F̄u
ij (4.12)

of F̄ into a volumetric part J̄1/3I and an isochoric part F̄
u

= J̄−1/3F̄. Let C̄ = (F̄
u
)T • F̄

u
denotes

the deviatoric right Cauchy–Green tensor and Ī1 = tr(C̄). A decoupled form of the strain energy

density [33] is given by

ψ =
κ

2
(J̄ − 1)2 +

Ē

6
(Ī1 − 3), (4.13)

where κ and Ē represent the bulk modulus and the initial elastic modulus of the passive

component, respectively. The Cauchy stress in the passive component σ p can be calculated via

σpij = κ(J̄ − 1)δij +
Ē

3J̄

(

B̄ij −
1

3
trace(B̄ij)δij

)

, (4.14)

where δij is the Kronecker delta and B̄ is the deviatoric left Cauchy–Green deformation tensor,

B̄ = Fµ • FµT
. Note that, as the numerical studies presented in Deshpande et al. [5], the strains

in the cell are relatively small and the neo-Hookean model for the passive elasticity suffices.

When warranted, a more refined model for passive elasticity such as Holzapfel et al. [34] could be

implemented to replace the neo-Hookean model.

The above-described constitutive model has been implemented into commercially available

finite-element (FE) software ABAQUS Standard via user-defined subroutine UMAT [35] to solve

plane strain/plane stress problems, see the electronic supplementary material, appendix D for

details. For interpretation purpose, at each integration point, both the maximal value of attached
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myosin, i.e. ηmax = ([AMP] + [AM])max, which occurs at orientation θmax and the averaged value

of attached myosin or phosphorylated myosin, i.e.

ηave = (1/π )

∫π/2

−π/2
ηdθ (4.15)

or

ξave = (1/π )

∫π/2

−π/2
ξdθ (4.16)

is calculated. The averaged orientation of stress fibres, θave, is also calculated as

θave =

(∫π/2
−π/2 ηθdθ

)

ηave
. (4.17)

In §6, the UMAT is used to investigate swine carotid media strips under electrical stimulation and

contraction of a hollow airway and a hollow arteriole buried in a soft matrix subjected to multiple

Ca2+ stimulations.

5. Simulation for one-dimensional smooth muscle cells: shortening-induced
deactivation

One phenomenon has been observed for striated [36,37], heart [38] and smooth muscle [39,40],

named shortening-induced deactivation, is that, when a muscle is allowed to shorten during an

isometric contraction, the maximum force that redevelops after shortening is smaller than the

isometric force at the same length without prior shortening. The underlying mechanism is not

fully understood. Possible hypothesis would be that the deactivation is caused by a combination

of disorganization of myofilaments, reattachment of cross-bridges and high cytoplasmic calcium

concentration after shortening [41]. In this section, we use the one-dimensional smooth muscle

model, described in §3, to simulate shortening-induced deactivation for molluscan smooth muscle

ABRM [42] and Aplysia I2 smooth muscle [43], respectively. The problems are solved using the

fifth-order Runge–Kutta method based ordinary differential equation solver ode45 in MATLAB

with initial condition [M] = 1, [MP] = 0, [AMP] = 0, [AM] = 0 at t = 0. The shortening velocity is

fixed at zero except for the moment that the quick release is imposed. For the sake of simplicity,

the passive response of the smooth muscles is ignored in one-dimensional problems.

Figure 4a shows the comparison of experimental result for time history of stress, reported by

Ruegg [42] on a molluscan smooth muscle ABRM, and the corresponding simulation results. The

stress value is normalized by the peak value in the time history of stress, occurred immediately

before the quick release. The muscle was subjected to a quick release by 5% of the original

length Lo at t = 40 s during an isometric contraction, and then kept at the shortened length,

see top of figure 4a. In the simulation, the rate constants and reference velocity are chosen as

k1 = k6 = 0.45[1 − exp(−t/0.1)][0.01 + 0.99 exp(−t/20)]s−1 [44], see in figure 4a), k2 = k5 = 0.1 s−1,

k3 = 0.44 s−1, k4 = 0.11 s−1, k7 = 0.006 s−1, k10 = 0.5 s−1, k8 = k9 = 1.7 s−1 and εo = 0.5 s−1. The time

history of normalized isometric stress at the Lo, predicted by the original Hai–Murphy model

or the current model with k8 = k9 = 0 s−1, is shown in the figure for comparison. As shown for

the experimental data, the quick release made normalized stress in the muscle firstly drop to

zero and then immediately redevelop from 0.6 at shortened length, which may suggest that the

shortening velocity by the quick release achieved the maximal shortening strain rate ε̇max of the

muscle and approximate 40% attached cross-bridges, namely η, become detached by the quick

release. Comparison between experimental data and predications by the Hai–Murphy model may

suggest that the stress redeveloped after quick release is initially less than isometric stress without

quick release (40 s < t < 80 s) and is fully recovered to isometric stress at a later stage (t > 80 s).

The agreement between experiment and simulation by the current model with k8 = k9 = 1.7 s−1

is good. To examine the effects of k8 and k9, figure 4b shows predictions of the time histories

of normalized stress and cross-bridge phosphorylation, ξ , at three selected values of k8 and k9,
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Figure 4. (a) Comparison of normalized active stress as a function of time obtained by experiment [42] and simulation at a

selected k8 and k9 (k8 = k9) for a quick release test on a molluscan smooth muscle ABRM. The time history of the normalized

active stress for isometric contraction, predicted via the Hai–Murphy model, is shown for comparison. (b) Efect of k8 and

k9 (k8 = k9) on time history of normalized active stress and time history of phosphorylated myosin ξ . The time histories of

the muscle length and k1 and k6 are shown on the top of the igure and in the igure (b), respectively.

i.e. k8 = k9 = 0.5, 1.7, 5.0 s−1. The predictions show that the normalized stress redeveloped

immediately after quick release at shortened length is sensitive to the values of k8 and k9: as

k8 and k9 increase from 0.5 to 5 s−1, the immediately redeveloped normalized stress decreases

from 0.8 to 0.18 with k8 = k9 = 1.7 s−1 giving the best fit to experimental data (0.6). The predicted

normalized stress for the three selected values of k8 and k9 will all be redeveloped to isometric

stress at a later stage (t > 80 s). However, the value of ξ is not sensitive the values of k8 and k9.

Figure 5 shows the response of an Aplysia I2 smooth muscle subjected to a quick release

with shortening of 2 mm at three velocities, i.e. V = −0.5, −1.5 and −2.0 mm s−1, respectively, see

top of the figure, during an isometric contraction. The muscle was kept at the shortened length

after the quick release. The experimental data for the time history of stress [43] are compared

with predictions by the original Hai–Murphy model for isometric contraction and by the current

model for isotonic contraction (v < 0.0 m s−1), as shown in figure 5a, in which the stress value

is normalized by the peak value in the time history of stress. The rate constants and reference

velocity are chosen as k1 = k6 = 0.45[1 − exp(−t/0.01)][0.1 + 0.9 exp(−t/5)] s−1 [44], see figure 5b),
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k2 = k5 = 0.39 s−1, k3 = 0.2 s−1, k4 = 0.8 s−1, k7 = 0.11 s−1, k8 = k9 = 16 s−1, k10 = 0.22 s−1 and

εo = 19.2 s−1 in the simulation. Higher shortening velocity in the quick release test results in

more reduction in the active stress of the smooth muscle. In all cases, the shortening strain

rate induced by the quick release is greater than the maximal shortening strain rate ε̇max of

the muscle as the active stresses during isotonic contraction are all greater than zero. Owing to

the low level of k1 and k6 at the later stage, the stress redeveloped at shortened length is lower

than the predicted isometric stress of the smooth muscle at initial length, as shown in figure 5a.

The agreement between experimental results and predictions by the current model is reasonably

good. The predicted time histories of the attached cross-bridges, η, and phosphorylated myosin,

ξ , are shown in figure 5b. Corresponding to quick release-induced reduction in active stress,

quick release results in reduction of attached cross-bridges, see in figure 5b for η: a higher

shortening velocity results in more reduction in η. However, quick release has negligible influence

on phosphorylation of myosin, i.e. ξ .

As demonstrated by the examples in this section as well as §3, the Hai–Murphy biochemical

model neglects the strain rate effect on the kinetics of cross-bridge interactions with actin

filaments in the isotonic contraction of smooth muscles.

6. Simulation for two-dimensional smooth muscle cells
In this section, FE package ABAQUS Standard is used to solve boundary value problems based on

the constitutive model for a two-dimensional cytoskeletal network, as described in §4. Six-node

quadratic plane stress triangle element (CPS6 in ABAQUS notation) and plane strain triangle

element (CPE6) are used to analyse plane stress (σ̄33 = 0) and plane strain (D̄33 = 0) problems,

respectively, under finite deformation setting, i.e. the effects of geometry changes on momentum

balance and rigid body rotations are taken into account. For the sake of simplicity, we ignore

the detailed arrangement of smooth muscle cells in a smooth muscle and assume the whole

smooth muscle is made of a single continuous smooth muscle cell. The effect of the arrangement

of smooth muscle cells will be examined in subsequent papers.

(a) Swine carotid media strips under electrical stimulation

Singer & Murphy [45] experimentally studied the maximum rate of myosin phosphorylation and

stress development in swine carotid media under isometric condition. In their experiment, strips

of the swine carotid media, with the dimension of 10 × 2 × 0.3 mm, were clamped at both short

ends and stimulated using a direct electrical field. The stress along the longitudinal direction

at the clamped ends and myosin phosphorylation level were measured for analysis. Relating η

to the measured stress and ξ to the measured myosin phosphorylation level, respectively, Hai

& Murphy [12] calibrated the Hai–Murphy model against the experimental data and obtained

the rate constants: k1, k6 = 0.55 for 5 s−1 followed by 0.3 s−1, see top of figure 6a, k2, k5 =

0.5 s−1, k3 = 0.4 s−1, k4 = 0.1 s−1 and k7 = 0.01 s−1. Based on the initial condition [M] = 1, [MP] = 0,

[AMP] = 0, [AM] = 0 at t = 0, predictions of η and ξ by the Hai–Murphy model agreed well with

the experimental results. However, the effect of transverse deformation (along free ends) in the

swine carotid media was not considered in the calculation. In this paper, this effect is examined via

a plane stress boundary value problem based on FE simulation. In Hai & Murphy [12], the stress

along the longitudinal direction measured at the clamped ends in the experiment [45] was treated

as the isometric stress in the media to calibrate the above-mentioned rate constants. However, we

will later show that the stress is less than the isometric stress owing to significant rotation of the

stress fibres at the clamped ends. In the FE simulation, the same rate constants mentioned above

were used and constants k10 and reference stain rate ε̇o were obtained via calibration against

experimental results [21], i.e. k10 = 0.3 s−1 and ε̇o = 0.03 s−1 (figure 2). The passive property of

swine carotid media was estimated as κ = 7840 N m−2 and Ē = 4704 N m−2 [12]. The sensitivity of

k8 and k9 is studied with k8 = k9.
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Figure 5. Response of an Aplysia I2 smooth muscle subjected to shortening of 2 mm at three velocities (see top of the igure).

(a) Comparison of normalized active stress as a function of time obtained by experiment [43] and simulation. The time history

of normalized active stress for isometric contraction without length change (v = 0.0 mm s−1), predicted via the Hai–Murphy

model, is shown for comparison. (b) Time histories of k1 and k6, fraction of attachedmyosinη and phosphorylatedmyosin ξ for

selected shortening velocities.

Figure 6a shows simulation results for time histories of averaged phosphorylated myosin, i.e.

ξave, and normalized averaged attached myosin, i.e. η̄ave = ηave/[η]max, at the centre of the strip

(point A in figure 6b) and normalized longitudinal active stress, σ̄ = σ/σmax, at clamped ends. For

swine carotid media, as reported by Rembold & Murphy [20], the maximum tension σmax is 1.8 ×

105 N m−2 and [η]max = 0.8. The experimental results for phosphorylation level and longitudinal

active stress normalized by σmax at clamped ends are shown in the figure for comparison [12,45].

Three selected values of k8 and k9 were used in the FE simulation, namely k8 = k9 = 0, 0.1 and

1.0, respectively, in which higher value represents greater effect of contraction velocity or strain

rate in biochemical reaction, see §3. As shown in the figure, the prediction on phosphorylated
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Figure 6. Prediction on the response of a rectangular swine carotid media strip clamped at both ends, with the dimension

of 10 × 2 × 0.3 mm, under electrical stimulation. The rate constants and reference strain rate are taken as k1, k6 = 0.55 for

5 s−1 followed by 0.3 s−1, see top of the igure, k2, k5 = 0.5 s−1, k3 = 0.4 s−1, k4 = 0.1 s−1, k7 = 0.01 s−1, k10 = 0.3 s−1 and

ε̇ = 0.03 s−1. (a) Time histories of η̄ave and ξave for selected values of k8 and k9, at the centre of the strip (point A in (b)), and

σ̄ at clamped ends, (b) contour of η̄ave at t = 40 s for selected values of k8 and k9 and (c) contour of θmax at t = 40 s and k8,

k9 = 0.0. In (a), experimental data of normalized isometric stress σ̄ (illed circles) and phosphorylation level ξ (open circles)

are shown for comparison [12,45]. In (b) and (c), the contours are presented at initial (undeformed) coniguration.

myosin, ξave, is not sensitive to k8 and k9, which is identical to the result for phosphorylated

myosin predicted by the original Hai–Murphy model (see figure 2 of Hai & Murphy [12]). Hence,

the agreement between ξave and the measured myosin phosphorylation level is good. The values
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of both η̄ave and σ̄ predicted by FE simulation are sensitive to k8, k9, i.e. higher values in k8, k9

correspond to lower values in η̄ave and σ̄ , in which the prediction for η̄ave obtained at k8, k9 = 0

is identical to the result for attached myosin predicted by the original Hai–Murphy model (see

figure 2 of Hai & Murphy [12]). Owing to the existence of a strain gradient in the swine carotid

media, the value of η̄ave is not uniform in the media except for the case with k8, k9 = 0. As shown

in figure 6b for the contours of η̄ave at t = 40 s for k8, k9 = 0.1 and 1.0, respectively, obtained by FE

simulation, the value of η̄ave increases from the centre to the clamped edges owing to decreased

deformation from centre to edges.

As given in equation (2.5), the value of η̄ave is equivalent to the corresponding isometric stress

normalized by σmax. However, as shown in figure 6a, the predicted normalized longitudinal

active stresses, σ̄ , at the clamped ends for all the selected values of k8 and k9 are less than the

corresponding η̄ave, hence, less than the corresponding normalized isometric stresses. This could

be explained as significant rotation of stress fibres at the clamped ends induced by transverse

deformation as shown in figure 6c for the contour of θmax at t = 40 s and k8, k9 = 0.0, which

is identical to the contours of both the orientation of maximum principal stress and averaged

orientation of stress fibres, θave, in the swine carotid media: the direction of stress fibres in the

media is aligned with the direction of maximum principal stress, which is rotated significantly at

the clamped ends. For brevity, the contours for k8, k9 = 0.1 and 1.0 are not shown here, as they

follow the same pattern as in figure 6c.

The rate constants, k1, . . . , k7, were obtained by calibrating η against the measured longitudinal

active stress at the clamped ends and ξ against the measured myosin phosphorylation level [12].

As shown in figure 6a, the fit between η̄ave and longitudinal active stress measured at the clamped

ends is reasonably good when the values of k8 and k9 vary between 0 and 0.1. However, the

predicted longitudinal active stress at the clamped end is less than the measured values. The

results presented in figure 6 suggest that transverse deformation may have significant influence

on the response of the swine carotid media.

(b) Contraction of an airway and an arteriole subjected to multiple stimulations

Several authors have experimentally examined the contraction of hollow organs subjected to

Ca2+ stimulation [47,48], which has motivated the FE simulation on the contraction of a hollow

airway, with internal radius 100 mm and external radius 140 mm, and a hollow arteriole, with

internal radius 40 mm and external radius 66.6 mm, buried in a 400 × 640 mm passive matrix

material, clamped at two opposite edges with remaining edges free, subjected to multiple

Ca2+ stimulations, as shown in the electronic supplementary material, figure E1a for the

geometries and boundary condition at the initial configuration. It is assumed that the out-of-

plane dimension is much longer than the in-plane ones. Therefore, the problem can be simplified

as a plane strain (D̄33 = 0) boundary value problem. No attempt was made to calibrate material

properties or intracellular Ca2+ concentration against existing experimental studies in this paper.

The passive matrix material was treated as a neo-Hookean solid with κ = 7800 N m−2 and

Ē = 9360 N m−2 representing soft tissues such as lung. The material properties of bovine

tracheal smooth muscle [12,27] and (figure 2) are used in the simulation for both the airway

and arteriole, i.e. k2, k5 = 0.1 s−1, k3 = 0.44 s−1, k4 = 0.11 s−1, k7 = 0.005 s−1, k10 = 0.31 s−1 and

ε̇o = 0.105 s−1. The rate constants of k1, k6 are chosen to represent three consecutive stimulations,

namely

k1, k6 = 0.05

[

1 − exp

(

−t

0.1

)] [

0.01 + 0.99 exp

(

−t

10

)]

t ≤ 100 s

0.075

[

1 − exp

(

−t + 100

0.1

)] [

0.01 + 0.99 exp

(

−t + 100

10

)]

100 s < t ≤ 200 s

0.1

[

1 − exp

(

−t + 200

0.1

)] [

0.01 + 0.99 exp

(

−t + 200

10

)]

200 s < t ≤ 300 s (6.1)
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as shown in the electronic supplementary material, figure S1Eb. The passive property of

bovine tracheal smooth muscle was assumed to be same as that of swine carotid media, i.e.

κ = 7840 N m−2 and Ē = 4704 N m−2. The sensitivity of k8 and k9 is studied with k8 = k9.

The time evolutions of relative areas, defined as the area of the hollow organ at the current

configuration normalized by that at the initial configuration, of the airway and the arteriole are

shown in electronic supplementary material, figure 1Eb and c for selected values of k8, k9. The

contours of the maximum principal true strain at t = 300 s for selected values of k8, k9 are shown

in the electronic supplementary material, figure E2. These figures show (i) lower values of k8,

k9 correspond to more reduction of the areas in the hollow organs, (ii) if the same values of k8,

k9 were applied to the airway and the arteriole, the relative areal changes of the airway and the

arteriole are almost identical, (iii) the deformed shapes of hollow organs may be sensitive to the

strain field in the matrix material and (iv) even though the values of k1, k6 decline to zero after

each stimulation, these hollow organs still keep in contracted state.

Electronic supplementary material, figure E3 shows the contours of orientation of the

maximum principal stress, the orientation of ηmax, θmax and the averaged orientation of stress

fibres, θave, in the airway and the arteriole at t = 300 s and k8, k9 = 1. For brevity, the contours

for other values of k8, k9 are not shown here, as they follow a similar pattern. These results all

suggest that the orientation of the maximum principal stress is almost identical to θmax at steady

state. However, θave is not consistent with the orientation of the maximum principal stress.

7. Discussion
The model presented here accounts for the nonlinear coupling between intracellular calcium ion

signalling, phosphorylation-dependent contractility and the kinetics of myosin phosphorylation

and cross-bridge interactions with thin filaments. The critical features of this model are as follows:

(i) It captures the main bio-chemo-mechanical features involved in isotonic contraction

of smooth muscle cells, including latch states, phosphorylation-dependent active

stress–strain rate relation as well as the strain-rate-dependent kinetics of cross-bridge

interactions with thin filaments.

(ii) The cytoskeletal stress fibre network is allowed to evolve based on bio-chemo-mechanical

boundary conditions applied to the smooth muscle cells, which enable simulation on

dynamic remodelling of cytoskeleton owing to altered boundary conditions.

The critical features enable the model to predict a wide range of experimentally observed

phenomena in smooth muscle cells or smooth muscle cells-based tissues. However, a note

of caution is appropriate. The model is highly nonlinear and results depend on the choice of

parameters. The majority of the rate constants in the current model is inherited from the Hai–

Murphy model (k1, . . ., k7). Systematic studies have been conducted to characterize the effects of

these rate constants [12,46] and [20,26,49], which provide a basis for the choice of the rate constants

and the interpretation of simulation results for the current model. Further comparisons between

simulations and experiments are also needed to justify and validate the microdisc or microsphere

RVE-based homogenization approach used for the two-dimensional model or the three-

dimensional model.

8. Concluding remarks
A group of constitutive equations have been presented for cytoskeletal contractility of idealized

one-dimensional smooth muscle cells, which capture the main features of bio-chemo-mechanical

responses induced by a rise in the intracellular calcium ion level. The biochemical model is

obtained by extending the four-state Hai–Murphy model to isotonic contraction of a smooth

muscle and the mechanical model accounts for phosphorylation-dependent active stress–strain

rate relation. For one-dimensional numerical examples, the constitutive equations are used to
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simulate shortening-induced deactivation for smooth muscles. The results obtained by simulation

agree well with the experimental measurements reported in the references. The results suggest

that the Hai–Murphy biochemical model neglects the strain rate effect on the kinetics of

cross-bridge interactions with actin filaments in the isotonic contraction of smooth muscles.

A model is developed to extend the one-dimensional constitutive equations for two-

dimensional and three-dimensional cytoskeletal networks of smooth muscle cells. The

two-dimensional version of the model has been incorporated, as the user-defined subroutine

(UMAT), into the commercial FE package ABAQUS Standard, which is used to investigate swine

carotid media strips under electrical stimulation as a plane stress problem. The results obtained

by FE simulation are compared with experimental measurements and analytical predictions by

the Hai–Murphy model [12]. It is found that the direction of the stress fibres (attached myosin) in

the media is aligned with the direction of maximum principal stress, which rotates significantly

at the clamped ends. Hence, transverse deformation may have significant influence on the bio-

chemo-mechanical response of the swine carotid media. FE simulation is also used to simulate

contractions of a hollow airway and a hollow arteriole buried in a soft matrix subjected to multiple

Ca2+ stimulations as a plane strain problem. The simulation results reveal that the deformed

shapes of hollow organs may be sensitive to the strain field in the matrix material and, at steady

state, the orientation of the maximal value of attached myosin, θmax, is almost identical to the

orientation of the maximum principal stress.

The model is capable of simulating dynamic remodelling of cytoskeletal network in response

to altered bio-chemo-mechanical boundary conditions. It could be used to design and interpret

appropriate experiments.
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