227 research outputs found

    High-Performance Capillary Electrophoresis for Determining HIV-1 Tat Protein in Neurons

    Get PDF
    The HIV-1 protein, Tat has been implicated in AIDS pathogenesis however, the amount of circulating Tat is believed to be very low and its quantification has been difficult. We performed the quantification of Tat released from infected cells and taken up by neurons using high performance capillary electrophoresis. This is the first report to successfully measure the amount of Tat in neurons and places Tat as a key player involved in HIV-associated neurocognitive disorders

    Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection.

    Get PDF
    Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses

    Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils

    Get PDF
    Wnt5a is a ligand that activates the noncanonical Wnt signaling pathways (??-catenin-independent pathways). Human neutrophils expressed several Wnt5a receptors, such as Frizzled 2, 5 and 8. Stimulation of human neutrophils with Wnt5a caused chemotactic migration and the production of two important chemokines, CXCL8 and CCL2. CCL2 production by Wnt5a was mediated by a pertussis toxin-sensitive G-protein-dependent pathway. Wnt5a also stimulated the phosphorylation of three mitogen-activated protein kinases (MAPKs: ERK, p38 MAPK and JNK) and Akt. Inhibition of ERK, p38 MAPK or JNK by specific inhibitors induced a dramatic reduction in Wnt5a-induced CCL2 production. Supernatant collected from lipopolysaccharide-stimulated macrophages induced neutrophil chemotaxis, which was significantly inhibited by anti-Wnt5a antibody. Our results suggested that Wnt5a may contribute to neutrophil recruitment, mediating the inflammation response.open4

    CCL2/MCP-I Genotype-Phenotype Relationship in Latent Tuberculosis Infection

    Get PDF
    Among the known biomarkers, chemokines, secreted by activated macrophages and T cells, attract groups of immune cells to the site of infection and may determine the clinical outcome. Association studies of CCL-2/MCP-1 -2518 A/G functional SNP linked to high and low phenotypes with tuberculosis disease susceptibility have shown conflicting results in tuberculosis. Some of these differences could be due the variability of latent infection and recent exposure in the control groups. We have therefore carried out a detailed analysis of CCL-2 genotype SNP -2518 (A/G transition) with plasma CCL-2 levels and related these levels to tuberculin skin test positivity in asymptomatic community controls with no known exposure to tuberculosis and in recently exposed household contacts of pulmonary tuberculosis patients. TST positivity was linked to higher concentrations of plasma CCL2 (Mann Whitney U test; p = 0.004) and was more marked when the G allele was present in TST+ asymptomatic controls (A/G; p = 0.01). Recent exposure also had a significant effect on CCL-2 levels and was linked to the G allele (p = 0.007). Therefore association studies for susceptibility or protection from disease should take into consideration the PPD status as well as recent exposure of the controls group used for comparison. Our results also suggest a role for CCL-2 in maintaining the integrity of granuloma in asymptomatic individuals with latent infection in high TB burden settings. Therefore additional studies into the role of CCL-2 in disease reactivation and progression are warranted

    The Critical Role of Notch Ligand Delta-like 1 in the Pathogenesis of Influenza A Virus (H1N1) Infection

    Get PDF
    Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4+and CD8+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection

    JC Virus T-Antigen Regulates Glucose Metabolic Pathways in Brain Tumor Cells

    Get PDF
    Recent studies have reported the detection of the human neurotropic virus, JCV, in a significant population of brain tumors, including medulloblastomas. Accordingly, expression of the JCV early protein, T-antigen, which has transforming activity in cell culture and in transgenic mice, results in the development of a broad range of tumors of neural crest and glial origin. Evidently, the association of T-antigen with a range of tumor-suppressor proteins, including p53 and pRb, and signaling molecules, such as β-catenin and IRS-1, plays a role in the oncogenic function of JCV T-antigen. We demonstrate that T-antigen expression is suppressed by glucose deprivation in medulloblastoma cells and in glioblastoma xenografts that both endogenously express T-antigen. Mechanistic studies indicate that glucose deprivation-mediated suppression of T-antigen is partly influenced by 5′-activated AMP kinase (AMPK), an important sensor of the AMP/ATP ratio in cells. In addition, glucose deprivation-induced cell cycle arrest in the G1 phase is blocked with AMPK inhibition, which also prevents T-antigen downregulation. Furthermore, T-antigen prevents G1 arrest and sustains cells in the G2 phase during glucose deprivation. On a functional level, T-antigen downregulation is partially dependent on reactive oxygen species (ROS) production during glucose deprivation, and T-antigen prevents ROS induction, loss of ATP production, and cytotoxicity induced by glucose deprivation. Additionally, we have found that T-antigen is downregulated by the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), and the pentose phosphate inhibitors, 6-aminonicotinamide and oxythiamine, and that T-antigen modulates expression of the glycolytic enzyme, hexokinase 2 (HK2), and the pentose phosphate enzyme, transaldolase-1 (TALDO1), indicating a potential link between T-antigen and metabolic regulation. These studies point to the possible involvement of JCV T-antigen in medulloblastoma proliferation and the metabolic phenotype and may enhance our understanding of the role of viral proteins in glycolytic tumor metabolism, thus providing useful targets for the treatment of virus-induced tumors

    HDL Interfere with the Binding of T Cell Microparticles to Human Monocytes to Inhibit Pro-Inflammatory Cytokine Production

    Get PDF
    BACKGROUND: Direct cellular contact with stimulated T cells is a potent mechanism that induces cytokine production in human monocytes in the absence of an infectious agent. This mechanism is likely to be relevant to T cell-mediated inflammatory diseases such as rheumatoid arthritis and multiple sclerosis. Microparticles (MP) generated by stimulated T cells (MPT) display similar monocyte activating ability to whole T cells, isolated T cell membranes, or solubilized T cell membranes. We previously demonstrated that high-density lipoproteins (HDL) inhibited T cell contact- and MPT-induced production of IL-1beta but not of its natural inhibitor, the secreted form of IL-1 receptor antagonist (sIL-1Ra). METHODOLOGY/PRINCIPAL FINDINGS: Labeled MPT were used to assess their interaction with monocytes and T lymphocytes by flow cytometry. Similarly, interactions of labeled HDL with monocytes and MPT were assessed by flow cytometry. In parallel, the MPT-induction of IL-1beta and sIL-1Ra production in human monocytes and the effect of HDL were assessed in cell cultures. The results show that MPT, but not MP generated by activated endothelial cells, bond monocytes to trigger cytokine production. MPT did not bind T cells. The inhibition of IL-1beta production by HDL correlated with the inhibition of MPT binding to monocytes. HDL interacted with MPT rather than with monocytes suggesting that they bound the activating factor(s) of T cell surface. Furthermore, prototypical pro-inflammatory cytokines and chemokines such as TNF, IL-6, IL-8, CCL3 and CCL4 displayed a pattern of production induced by MPT and inhibition by HDL similar to IL-1beta, whereas the production of CCL2, like that of sIL-1Ra, was not inhibited by HDL. CONCLUSIONS/SIGNIFICANCE: HDL inhibit both MPT binding to monocytes and the MPT-induced production of some but not all cytokines, shedding new light on the mechanism by which HDL display their anti-inflammatory functions

    LILRA2 Selectively Modulates LPS-Mediated Cytokine Production and Inhibits Phagocytosis by Monocytes

    Get PDF
    The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells. These suggest a selective immune regulatory role for LILRAs during innate immune responses. However, whether LILRA2 has functions distinct from other receptors of the innate immunity including Toll-like receptor (TLR) 4 and FcγRI remains unknown. Moreover, the effects of LILRA2 on TLR4 and FcγRI-mediated monocyte functions are not elucidated. Here, we show activation of monocytes via LILRA2 cross-linking selectively increased GM-CSF production but failed to induce IL-12 and MCP-1 production that were strongly up-regulated by LPS, suggesting functions distinct from TLR4. Interestingly, LILRA2 cross-linking on monocytes induced similar amounts of IL-6, IL-8, G-CSF and MIP-1α but lower levels of TNFα, IL-1β, IL-10 and IFNγ compared to those stimulated with LPS. Furthermore, cross-linking of LILRA2 on monocytes significantly decreased phagocytosis of IgG-coated micro-beads and serum opsonized Escherichia coli but had limited effect on phagocytosis of non-opsonized bacteria. Simultaneous co-stimulation of monocytes through LILRA2 and LPS or sequential activation of monocytes through LILRA2 followed by LPS led lower levels of TNFα, IL-1β and IL-12 production compared to LPS alone, but had additive effect on levels of IL-10 and IFNγ but not on IL-6. Interestingly, LILRA2 cross-linking on monocytes caused significant inhibition of TLR4 mRNA and protein, suggesting LILRA2-mediated suppression of LPS responses might be partly via regulation of this receptor. Taken together, we provide evidence that LILRA2-mediated activation of monocytes is significantly different to LPS and that LILRA2 selectively modulates LPS-mediated monocyte activation and FcγRI-dependent phagocytosis
    corecore