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molecular mechanism, emphasizing the TLR signaling pathways in association with the
potential recruitment of macrophages in the cochlea and the modulation of
inflammation by ubiquitin-editing protein A20. Molecules potentially involved in these
signaling pathways were thoroughly analysed using immunohistochemistry in the rat
cochlea exposed to AgNPs at various concentrations through intratympanic injection.
The results showed that 0.4 % AgNPs but not 0.02 % AgNPs, up-regulated the
expressions of CD68, TLR4, MCP1, A20, and RNF11 in the strial basal cells, spiral
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might confer macrophage-like functions on the strial basal cells and spiral ligament
fibrocytes and enhance the immune activities of non-sensory supporting cells of Corti's
organ through the up-regulation of CD68, which might be involved in TLR4 activation.
A20 and RNF11 played roles in maintaining cochlear homeostasis via negative
regulation of the expressions of inflammatory cytokines.
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Background 1 

With the rapid development of nanotechnology and increasing applications of engineered na-2 

nomaterials in our daily lives, their potential safety issues have become a serious concern in 3 

public health. The rat ear model has been applied to investigate the impact of silver nanoparti-4 

cles (AgNPs) on the permeability of biological barriers in the skin, mucosa, and inner ear that 5 

is analogous to the nervous system (e.g., brain and spinal cord) [1]. Previous research showed 6 

that AgNPs led to hyaluronan accumulation in the cochlea, impaired biological barriers in the 7 

skin of the external ear canal, mucosa of the middle ear, and inner ear, and consequently caused 8 

hearing loss after delivery into the middle ear [1-3]. Hyaluronan acts as an endogenous patho-9 

gen-associated molecular pattern (PAMP) in response to hazardous signals through binding to 10 

hyaluronan binding proteins (hyaladherins) including toll-like receptors 2/4 (TLR2/4), CD44, 11 

receptor for hyaluronan-mediated motility, and tumour necrosis factor-α (TNF-α)-stimulated 12 

glycoprotein-6 [4-7]. Among them, TLR2/4 are a category of mammalian homologues of Dro-13 

sophila Toll proteins that are of great importance for innate host defence. They belong to the 14 

pattern recognition receptors (PRRs) that specifically recognize and respond to an expansive 15 

variety of PAMPs [8]. Moreover, TLR4 is responsible for sensing danger/damage-associated 16 

molecular patterns (DAMPs) and conferring immunostimulatory activity [9]. The activation of 17 

TLRs initiates the up-regulation of transcription factors [e.g., nuclear factor-κB (NF-κB) and 18 

activator protein-1] that play pivotal roles in producing inflammatory molecules [e.g., interleu-19 

kin-1β (IL-1β), interleukin-6 (IL-6), and TNF-α together with its receptors TNFRs], chemo-20 

kines (e.g., monocyte chemoattractant proteins, MCPs), and reactive oxygen/nitrogen species, 21 

leading to inflammatory diseases [10-12]. 22 
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3 
 

Several proteins that are implicated in mediating TLR signaling attenuation have been identi-1 

fied such as the ubiquitin-editing protein A20 [13-15]. A20 acts as a negative effector in regu-2 

lating TLR-mediated inflammatory response, and its over-expression inhibits TLR2- and 3 

TLR4-mediated IL-8 synthesis in airway epithelial cells [16]. A20 loss elevates the levels of 4 

NF-κB-regulated inflammatory cytokines and causes spontaneous cerebral inflammation [17]. 5 

RING finger protein 11 (RNF11), a critical component of A20, is indicated as one of the key 6 

negative regulators in controlling the NF-κB signaling pathway. RNF11 was shown to protect 7 

microglia irritated by lipopolysaccharide through manipulating the NF-κB signaling pathway 8 

[18]. RNF11 knockdown in the monocytes led to persistent TNF- and lipopolysaccharide-me-9 

diated NF-κB signaling activation and up-regulated NF-κB-associated inflammatory gene tran-10 

scripts [18, 19]. 11 

 12 

As another important hyaladherin, CD44 is capable of recruiting monocytes from the peripheral 13 

blood upon hyaluronan binding [20]. Further study has revealed that weakened interaction be-14 

tween CD44 and hyaluronan decreases the production of MCPs and consequently undermines 15 

the recruitment of mononuclear cells [21]. MCPs are a family of small heparin-binding, posi-16 

tively charged chemokines that play an indispensable role in controlling cell behaviour in re-17 

sponse to exogenous stimulation. They are crucial in triggering the mobilization and migration 18 

of immunocompetent cells such as monocytes, neutrophils, lymphocytes, and dendritic cells 19 

along bone marrow sinusoids that frequently anastomose with capillaries and in directing them 20 

into the inflamed tissues [22]. In the inner ear, spiral ligament fibrocytes act as the primary 21 
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immune sensors in response to lipopolysaccharide, involving TLR2-dependent NF-κB signal-1 

ing activation and MCP1 up-regulation and resulting in monocyte migration and consequential 2 

infiltration [23, 24]. 3 

 4 

Adhesion molecules play a critical role in mediating leukocyte immobilization as a result of 5 

anchoring [25]. Among them, vascular cell adhesion molecule 1 (VCAM1) enables rolling 6 

monocytes along the microvascular wall at a far slower velocity to adhere to the endothelial 7 

cells [26]. Rac1, a member of Rho-like small GTPase, mediated by the phosphorylation of my-8 

osin light chain protein, facilitates actin cytoskeletal remodelling and modulates tight junctional 9 

proteins (e.g., occludin and claudin). The breakdown of tight junction in the microvascular wall 10 

enables the leukocytes to infiltrate into the targeting site [27-29]. The extracellular signal-reg-11 

ulated kinases 1/2 (Erk1/2), c-Jun N-terminal kinases 1/2/3 (JNK1/2/3, also known as stress-12 

activated protein kinases), and p38 isoforms (α, β, γ, and δ) that belong to the MAPKs family 13 

are considered to be the elementary components of cellular signaling transduction underlying 14 

leukocyte locomotion and endothelial cell activities [30, 31]. 15 

 16 

Migrated monocytes can differentiate into macrophages. Plasticity and flexibility are the key 17 

features of macrophages and reflect their activation states [32]. Activated macrophages have 18 

distinctive functional phenotypes that are similar to the Th1/Th2 polarization paradigm of T 19 

lymphocytes and can be defined as M1 and M2. M1 induced by Th1 signature cytokines [e.g., 20 

interferon-γ (IFN-γ) and TNF-α], which are associated with the TLR-dependent signaling path-21 

way, has the ability of up-regulating genes involved in cell-biased immunity, enhancing antigen 22 
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presentation, and producing a distinctive array of inflammatory cytokines (e.g., IL-1β, IL-6, 1 

and TNF-α). M2 induced by Th2 signature cytokines (e.g., IL-4 and IL-13) plays an important 2 

role in immune suppression, anti-inflammation (e.g., IL-10), tissue regeneration, and wound 3 

healing [e.g., transforming growth factor-β (TGF-β) and vascular endothelial growth factor 4 

(VEGF)] [33, 34]. 5 

 6 

The current study aimed to elucidate the exact mechanism of AgNPs-induced biological barrier 7 

functional changes in the inner ear. We exposed the rat inner ear to AgNPs and hypothesized 8 

that TLR signaling pathways were involved in AgNPs-induced hearing loss in association with 9 

the potential recruitment of macrophages in the rat cochlea. A20 might play a role in regulating 10 

the downstream signaling of TLR pathways. Molecules potentially involved in these signaling 11 

pathways were thoroughly analysed using immunohistochemistry in the rat cochlea after 12 

AgNPs exposure. 13 

 14 

Methods 15 

Animal and AgNPs 16 

Ten albino male Sprague-Dawley rats weighing between 250 g and 300 g were kept at an am-17 

bient temperature of 20-22 °C with a relative humidity of 50±5 % under a 12/12 h light/dark 18 

cycle in the experimental animal unit, University of Tampere. The experiments were performed 19 

under general anaesthesia with a mixture of 0.5 mg/kg medetomidine hydrochloride (Domitor®, 20 

Orion, Espoo, Finland) and 75 mg/kg ketamine hydrochloride (Ketalar®, Pfizer, Helsinki, Fin-21 
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land) administered via intraperitoneal injection, followed by intramuscular injection of en-1 

rofloxacin (Baytril®vet, Orion, Turku, Finland) at a dose of 10 mg/kg to prevent potential in-2 

fection. The animals' eyes were protected by carbomer (Viscotears®, Novartis Healthcare A/S, 3 

Denmark). All procedures in the study complied with local ethics committee standards (per-4 

mission number: ESAVI/3033/04.10.03/2011) and were conducted in accordance with Euro-5 

pean Legislation. The Ag NPs (Colorobbia, Firenze, Italy) used in this study were highly fac-6 

eted with a mean size of 21±8 nm using transmission electron microscope. The mean hydrody-7 

namic size of the particles was 117±24 nm when suspended in deionized water (dH2O) using 8 

dynamic light scattering, and the zeta potential was measured to be −20±9 mV [2]. More results 9 

for the characterization could be referred to our previous study [2]. 10 

 11 

AgNPs administration 12 

After anaesthetization, 40 μl of either 0.4 % (n=5) or 0.02 % (n=5) AgNPs were injected into 13 

the middle ear cavity under an operating microscope (OPMI1-F, Carl Zeiss, Jena, Germany) 14 

according to a previously reported procedure [1-3]. The tested concentrations were selected 15 

according to the auditory brainstem response results showing that 0.4 % AgNPs caused reversi-16 

ble hearing loss that partially recovered at the 7th d, while 0.02 % AgNPs only induced hearing 17 

loss at 32 kHz that returned to the baseline at the 7th d. Moreover, micro CT scanning displayed 18 

that 0.4 % AgNPs caused an obvious middle ear infiltration that was absent in the rats exposed 19 

to 0.02 % AgNPs [1-3]. The contralateral ear (n=10) received dH2O under the same circum-20 

stances and was used as a negative control. 21 

 22 
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Sample preparation 1 

On the 7th d post-injection, the anaesthetized rats were perfused with 0.01 M pH 7.4 phosphate 2 

buffered saline (PBS) containing 0.6 % (v/v) heparin (LEO Pharma A/S, Ballerup, Denmark) 3 

via a cardiac approach followed by 4 % paraformaldehyde (Merck, Espoo, Finland) to fix the 4 

head. The bullae were isolated after decapitation and decalcified using 10 % EDTA (Sigma, 5 

Steinheim, Germany) in the following 4 weeks with weekly solution changes. A standard pro-6 

cedure for paraffin embedding and tissue block was conducted in accordance with the protocol 7 

in a previous study [3]. 8 

 9 

Immunofluorescence staining 10 

The procedure for immunofluorescence staining was in accordance with the protocol in a pre-11 

vious study [3]. The primary antibodies used in the assay were hosted in rabbit and were anti-12 

CD68 (1:200, Abcam, UK), anti-CD44 (1:400, Abcam, UK), anti-TLR2 (1:250, Novus Biolog-13 

icals, UK), anti-TLR4 (1:200, Novus Biologicals, UK), anti-MCP1 (1:4000, Novus Biologicals, 14 

UK), anti-MCP2 (1:200, GeneTex, USA), anti-Rac1 (1:800, Abcam, UK), anti-myosin light 15 

chain (1:100, Cell Signaling Technology, USA), anti-VCAM1 (1:50, Proteintech, USA), anti-16 

Erk1/2 (1:400, Abcam, UK), anti-JNK (1:100, Cell Signaling Technology, USA), anti-p38 17 

(1:100, Cell Signaling Technology, USA), anti-TNF-α (1:800, Abcam, UK), anti-TNFR1 18 

(1:500, Abcam, UK), anti-TNFR2 (1:50, Abcam, UK), anti-IL-1β (1:400, Novus Biologicals, 19 

UK), anti-IL-10 (1:400, Abbiotec, USA), anti-TGF-β (1:500, Abcam, UK), anti-A20 (1:200, 20 

Sigma-Aldrich, USA), and anti-RNF11 (1:100, Abcam, UK). Briefly, the slices were incubated 21 

with the primary antibodies listed above at 4 °C overnight followed by Alexa Fluor® 488 Goat 22 
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Anti-Rabbit IgG (1:200, diluted with 0.1 % BSA, Life TechnologiesTM, New York, USA) as a 1 

secondary antibody at room temperature for 1 h in a dark environment. The nuclei were coun-2 

terstained with 10 μg/ml DAPI (Life TechnologiesTM, New York, USA) at room temperature 3 

for 10 min, and the slides were mounted for confocal microscopy with anti-quenching Fluoro-4 

mount (Sigma, St. Louis, USA). In the negative control slices, the primary antibodies were 5 

replaced with 0.1 % BSA (dissolved in 0.01 M PBS pH 7.4, Sigma, St. Louis, USA). 6 

 7 

Immunostaining visualized by 3, 3'-diaminobenzidine 8 

After deparaffinization and hydration, the slices were immersed in 3 % H2O2-methanol at room 9 

temperature for 30 min. After rinsing with PBS for 2×2 min, the slices were digested with 0.1 % 10 

Trypsin (dissolved in 0.01 M PBS pH 7.4, Sigma, St. Louis, USA) at 37 ºC for 30 min. After 11 

rinsing with 0.1 % PBS-Tween® 20 (diluted in 0.01 M PBS pH 7.4, Sigma, St. Louis, USA) for 12 

3×2 min, the slices were incubated with 10 % normal goat serum (Invitrogen, Paisley, UK) at 13 

room temperature for 30 min followed by the primary antibodies listed above at 4 °C overnight. 14 

After rinsing with 0.1 % PBS-Tween® 20 for 3×2 min, the slices were incubated with biotinyl-15 

ated goat anti-rabbit IgG at a dilution of 1:100 (Vector Laboratories Ltd., Peterborough, UK) at 16 

room temperature for 1 h. After rinsing with 0.1 % PBS-Tween® 20 for 32 min, the slices were 17 

incubated with the streptavidin-biotin-peroxidase complex (Vector Laboratories Ltd., Peterbor-18 

ough, UK) at 37 ºC for 1 h. After rinsing with 0.1 % PBS-Tween® 20 for 3×5 min, antibody 19 

binding was visualized by 3, 3'-diaminobenzidine using the DAB Peroxidase Substrate Kit 20 

(Vector Laboratories Ltd., Peterborough, UK) at room temperature for 5 min. Alternatively, the 21 

nuclei were counterstained using Harris's Solution (Merck, Darmstadt, Germany). Dehydration 22 
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and vitrification were completed by a standard protocol (70 % alcohol 10 s, 94 % alcohol 210 1 

s, absolute alcohol 21 min, and xylene 33 min). The slides were mounted for light micros-2 

copy with ClarionTM Mounting Medium (Sigma, St. Louis, USA). Slices for negative controls 3 

were prepared after the replacement of primary antibodies with 0.1 % BSA (dissolved in 0.01 4 

M PBS pH 7.4, Sigma, St. Louis, USA). The staining intensities (shown by the greyscale value 5 

that was inversely correlated with the staining intensity) in the strial basal cells, spiral ligament 6 

fibrocytes, and spiral ganglion cells were measured and semi-quantified using ImageJ 1.45S 7 

software (NIH, Bethesda, USA). 8 

 9 

Confocal and light microscopies 10 

The samples from immunofluorescence staining were observed and images obtained under a 11 

Nikon microscope (ECLIPSE Ti) combined with an Andor confocal system installed with An-12 

dor iQ 2.8 software (Andor Technology, Belfast, UK). The excitation lasers were 405 nm (blue 13 

excitation) and 488 nm (green excitation) from an Andor Laser Combiner System, and the cor-14 

responding emission filters were 450-465 nm (DAPI) and 525/50 nm (FITC), respectively. The 15 

immunostained samples visualized by 3, 3'-diaminobenzidine were observed under a light mi-16 

croscope (LEICA DM 2000, Espoo, Finland), and images were digitally photographed using a 17 

camera video (Olympus DP 25, Tokyo, Japan) with the cellSens Dimension 1.6 Olympus soft-18 

ware (Olympus Corporation, Tokyo, Japan) installed. 19 

 20 

Analysis and statistics 21 
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Statistical analyses were performed using the IBM® SPSS® Statistics Version 20 software pack-1 

age (SPSS Inc., Chicago, USA). One-way ANOVA was used to compare the staining intensities 2 

for CD68, TLR2, TLR4, MCP1, MCP2, A20, and RNF11 in the designated structures of differ-3 

ent cochlear turns among the cochleae exposed to 0.4 % AgNPs, 0.02 % AgNPs, and dH2O. 4 

The LSD post-hoc test was used to evaluate the pairwise difference. The independent sample t-5 

test was used to compare the staining intensities for CD44, Rac1, Erk1/2, IL-1β, IL-10, and 6 

TGF-β in the designated structures of different cochlear turns between the cochleae exposed to 7 

0.4 % AgNPs and dH2O. A value of p<0.05 indicated that the difference was statistically sig-8 

nificant. 9 

 10 

Results 11 

AgNPs augment the sensitivity and chemotactic proteins of cochlear cells 12 

In the cochleae exposed to dH2O, the inner hair cells and pillar cells of Corti's organ showed 13 

moderate staining for CD68, while the outer hair cells and Deiters' cells demonstrated extremely 14 

weak staining for CD68 (Fig. 1H). The strial basal cells, spiral ligament fibrocytes, and spiral 15 

ganglion cells exhibited mild staining for CD68 (Fig. 1D and 1F). In the cochlear lateral wall, 16 

0.4 % AgNPs intensified CD68 staining remarkably in the strial basal cells (p<0.01, post-hoc 17 

test) and spiral ligament fibrocytes (mainly Type III) (p<0.01, post-hoc test) in the 1st turn (Fig. 18 

1A). However, no enhanced staining was observed in cells in the 2nd and 3rd turns (Fig. 1B and 19 

1C) (p>0.05, post-hoc test). In the CD68+ cell population, sparse ramified cells and mononu-20 

clear cells were identified in the spiral ligament and the modiolus, respectively (Fig. 1C and 1I). 21 

In Corti's organ, 0.4 % AgNPs increased CD68 staining in the inner hair cells and pillar cells 22 
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but not in the outer hair cells and Deiters' cells (Fig. 1G). In the spiral ganglion cells and capil-1 

lary endothelial cells, 0.4 % AgNPs did not alter CD68 staining in all turns (Fig. 1E) (p>0.05, 2 

post-hoc test). 0.02 % AgNPs had no influence on CD68 staining in the aforementioned cells 3 

in all turns (images not shown) (p>0.05, post-hoc test). 4 

 5 

In the cochleae exposed to dH2O, the strial intermediate cells, strial basal cells, spiral ligament 6 

fibrocytes, spiral ganglion cells, and outer hair cells, pillar cells, and Deiters' cells of Corti's 7 

organ showed intensive staining for CD44 (Fig. S1B, S1D, and S1F), while the inner hair cells 8 

demonstrated mild staining for CD44 (Fig. S1F). 0.4 % AgNPs had no influence on the staining 9 

in the aforementioned cells in all turns (Fig. S1A, S1C, and S1E) (p>0.05, independent sample 10 

t-test). 11 

 12 

In the cochleae exposed to dH2O, the strial basal cells, spiral ligament fibrocytes (mainly Type 13 

II), spiral ganglion cells, and inner hair cells and pillar cells of Corti's organ showed intensive 14 

staining for TLR2 (Fig. S2B, S2D, and S2F), while the outer hair cells and Deiters' cells dis-15 

played extremely weak staining for TLR2 (Fig. S2F). The strial basal cells and spiral ligament 16 

fibrocytes demonstrated mild staining for TLR4 (Fig. 2D), while the spiral ganglion cells and 17 

hair cells, pillar cells, and Deiters' cells of Corti's organ exhibited extremely weak staining for 18 

TLR4 (Fig. 2F and 2H). In the cochleae exposed to 0.4 % AgNPs, the outer hair cells and 19 

Deiters' cells of Corti's organ showed more intensive staining for TLR2 (Fig. S2E). However, 20 

the strial basal cells, spiral ligament fibrocytes, and spiral ganglion cells did not show any 21 

changes in the staining of TLR2 in all turns (Fig. S2A and S2C) (p>0.05, one-way ANOVA), 22 
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nor in the inner hair cells and pillar cells (Fig. S2E). The strial basal cells (p<0.05 in the 1st and 1 

2nd turns and p<0.01 in the 3rd turn, one-way ANOVA) and spiral ligament fibrocytes (Fig. 2A-2 

2C) (p<0.05 in the 1st, 2nd, and 3rd turns, one-way ANOVA) demonstrated more intensive stain-3 

ing for TLR4 that was independent of the cochlear turn (p>0.05, one-way ANOVA). The inner 4 

hair cells, pillar cells, and Deiters' cells displayed more intensive staining for TLR4, but the 5 

outer hair cells did not (Fig. 2G). However, the spiral ganglion cells did not show any changes 6 

(Fig. 2E). 0.02 % AgNPs had no influence on the staining of TLR2 and TLR4 in the aforemen-7 

tioned cells in all turns (images not shown) (p>0.05, one-way ANOVA). 8 

 9 

In the cochleae exposed to dH2O, the Deiters' cells of Corti's organ showed intensive staining 10 

for MCP1, while the inner hair cells and inner pillar cells exhibited moderate staining for MCP1 11 

(Fig. 3H). The strial intermediate cells, strial basal cells, spiral ganglion cells, outer hair cells, 12 

and outer pillar cells demonstrated mild staining for MCP1 (Fig. 3D, 3F, and 3H), while the 13 

spiral ligament fibrocytes displayed extremely weak staining for MCP1 (Fig. 3D). Unexpect-14 

edly, the strial basal cells, spiral ligament fibrocytes, spiral ganglion cells, and the hair cells, 15 

pillar cells, and Deiters' cells of Corti's organ showed intensive staining for MCP2 (Fig. S3B, 16 

S3D, and S3F). In the cochleae exposed to 0.4 % (Fig. 3A) and 0.02 % AgNPs (image not 17 

shown), the strial intermediate cells, capillary endothelial cells, and strial basal cells (p<0.01, 18 

one-way ANOVA) in the 1st turn demonstrated more intensive staining for MCP1. However, 19 

the spiral ligament fibrocytes (mainly Type III) in the cochleae exposed to 0.4 % AgNPs (Fig. 20 

3A-3C) (p<0.01 in the 1st and 3rd turns and p<0.05 in the 2nd turn, one-way ANOVA) showed 21 

more intensive staining for MCP1 that was independent of the cochlear turn (p>0.05, one-way 22 
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ANOVA). In addition, 0.4 % AgNPs increased MCP1 staining in the inner pillar cells and De-1 

iters' cells of Corti's organ (Fig. 3G). However, the spiral ganglion cells did not show any 2 

changes (Fig. 3E) (p>0.05, one-way ANOVA). Neither 0.4 % nor 0.02 % AgNPs affected the 3 

staining of MCP2 in the aforementioned cells in all turns (images not shown) (p>0.05, one-way 4 

ANOVA). 5 

 6 

AgNPs had no effect on the expressions of tight junction-associated proteins including 7 

Rac1, myosin light chain, VCAM1, and MAPKs signaling proteins 8 

In the cochleae exposed to dH2O, the strial intermediate cells, strial basal cells, spiral ganglion 9 

cells, and hair cells, pillar cells, and Deiters' cells of Corti's organ showed intensive staining for 10 

Rac1 (Fig. S4B, S4D, and S4F), while the spiral ligament fibrocytes (mainly Type II) demon-11 

strated moderate staining for Rac1 (Fig. S4B). The spiral ganglion cells and inner pillar cells of 12 

Corti's organ exhibited moderate staining for myosin light chain (Fig. S5D and S5F), while the 13 

hair cells, outer pillar cells, and Deiters' cells displayed mild staining for myosin light chain 14 

(Fig. S5F). The strial basal cells and spiral ligament fibrocytes showed extremely weak staining 15 

for myosin light chain (Fig. S5B). The strial basal cells, spiral ligament fibrocytes, spiral gan-16 

glion cells, and hair cells, pillar cells, and Deiters' cells of Corti's organ showed extremely weak 17 

staining for VCAM1 (Fig. S6B, S6D, and S6F), JNK (Fig. S8B, S8F, and S8J), and p38 (Fig. 18 

S8D, S8H, and S8L). However, the strial intermediate cells, strial basal cells, spiral ligament 19 

fibrocytes, spiral ganglion cells, and hair cells, pillar cells, and Deiters' cells of Corti's organ 20 

showed intensive staining for Erk1/2 (Fig. S7B, S7D, and S7F). 0.4 % AgNPs had no influence 21 

on the staining of Rac1 (Fig. S4A, S4C, and S4E) (p>0.05, independent sample t-test), myosin 22 
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light chain (Fig. S5A, S5C, and S5E), VCAM1 (Fig. S6A, S6C, and S6E), Erk1/2 (Fig. S7A, 1 

S7C, and S7E) (p>0.05, independent sample t-test), JNK (Fig. S8A, S8E, and S8I), and p38 2 

(Fig. S8C, S8G, and S8K) in the aforementioned cells in all turns. 3 

 4 

AgNPs up-regulated the expressions of ubiquitin-editing proteins A20 and RNF11 without 5 

affecting the expressions of inflammatory cytokines 6 

In the cochleae exposed to dH2O, the spiral ganglion cells, inner hair cells and inner pillar cells 7 

of Corti's organ showed mild staining for TNF-α (Fig. S9H and S9N), while the strial basal 8 

cells, spiral ligament fibrocytes, outer pillar cells, outer hair cells, and Deiters' cells demon-9 

strated extremely weak staining for TNF-α (Fig. S9B and S9N). The strial intermediate cells, 10 

strial basal cells, and spiral ganglion cells exhibited mild staining for TNFR1 (Fig. S9D and 11 

S9J), while the spiral ligament fibrocytes, hair cells, pillar cells, and Deiters' cells displayed 12 

extremely weak staining for TNFR1 (Fig. S9D and S9P). The strial intermediate cells and strial 13 

basal cells showed mild staining for TNFR2 (Fig. S9F), while the spiral ligament fibrocytes, 14 

spiral ganglion cells, hair cells, pillar cells, and Deiters' cells demonstrated extremely weak 15 

staining for TNFR2 (Fig. S9F, S9L, and S9R). The strial basal cells, spiral ganglion cells, and 16 

pillar cells of Corti's organ exhibited intensive staining for IL-1β, while the spiral ligament 17 

fibrocytes (mainly Type II) and inner hair cells displayed mild staining for IL-1β (Fig. S10B, 18 

S10D, and S10F). The outer hair cells and Deiters' cells showed extremely weak staining for 19 

IL-1β (Fig. S10F). 0.4 % AgNPs had no influence on the staining of TNF-α (Fig. S9A, S9G, 20 

and S9M), TNFR1 (Fig. S9C, S9I, and S9O), TNFR2 (Fig. S9E, S9K, and S9Q), and IL-1β 21 

(Fig. S10A, S10C, and S10E) (p>0.05, independent sample t-test) in the aforementioned cells 22 
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in all turns. 1 

 2 

In the cochleae exposed to dH2O, the spiral ganglion cells showed intensive staining for IL-10 3 

(Fig. S11F), while the pillar cells of Corti's organ demonstrated mild staining for IL-10 (Fig. 4 

S11J). The strial basal cells, spiral ligament fibrocytes, hair cells, and Deiters' cells exhibited 5 

extremely weak staining for IL-10 (Fig. S11B and S11J). The spiral ganglion cells and pillar 6 

cells of Corti's organ displayed intensive staining for TGF-β (Fig. S11H and S11L), while the 7 

strial basal cells, spiral ligament fibrocytes, and inner hair cells demonstrated mild staining for 8 

TGF-β (Fig. S11D and S11L). The outer hair cells and Deiters' cells showed extremely weak 9 

staining for TGF-β (Fig. S11L). 0.4 % AgNPs had no influence on the staining of IL-10 (Fig. 10 

S11A, S11E, and S11I) (p>0.05, independent sample t-test) and TGF-β (Fig. S11C, S11G, and 11 

S11K) (p>0.05, independent sample t-test) in the aforementioned cells in all turns. 12 

 13 

In the cochleae exposed to dH2O, the spiral ganglion cells, inner hair cells, pillar cells, and 14 

Deiters' cells of Corti's organ showed intensive staining for A20 (Fig. 4J and 4N), while the 15 

strial basal cells, spiral ligament fibrocytes, and outer hair cells demonstrated mild staining for 16 

A20 (Fig. 4D and 4N). The strial basal cells, spiral ganglion cells, and inner pillar cells of Corti's 17 

organ exhibited intensive staining for RNF11, while the spiral ligament fibrocytes, hair cells, 18 

and outer pillar cells displayed mild staining for RNF11 (Fig. 4H, 4L, and 4P). The Deiters' 19 

cells showed extremely weak staining for RNF11 (Fig. 4P). In the cochlear lateral wall, 0.4 % 20 

AgNPs enhanced the staining of A20 (p<0.05 in the 1st and 2nd turns and p>0.05 in the 3rd turn 21 

at the strial basal cells, p<0.05 in the 1st and 3rd turns and p<0.01 in the 2nd turn at the spiral 22 
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ligament fibrocytes, one-way ANOVA) and RNF11 (p>0.05 in the 1st and 3rd turns and p<0.05 1 

in the 2nd turn at the strial basal cells, p<0.01 in the 1st turn and p<0.05 in the 2nd and 3rd turns 2 

at the spiral ligament fibrocytes, one-way ANOVA) remarkably in the strial basal cells and 3 

spiral ligament fibrocytes that was independent of the cochlear turn (Fig. 4A-4C and 4E-4G) 4 

(p>0.05, one-way ANOVA). In Corti's organ, 0.4 % AgNPs increased A20 staining in the outer 5 

hair cells and Deiters' cells (Fig. 4M) and RNF11 staining in the outer pillar cells and Deiters' 6 

cells (Fig. 4O). In the spiral ganglion cells and capillary endothelial cells, 0.4 % AgNPs did not 7 

alter the staining of A20 and RNF11 in all turns (Fig. 4I and 4K) (p>0.05, post-hoc test). 0.02 % 8 

AgNPs had no influence on the staining of A20 and RNF11 in the aforementioned cells in all 9 

turns (images not shown) (p>0.05, post-hoc test). 10 

 11 

The unchanged molecules in the rat cochlea exposed to AgNPs were summarized in Table 1. 12 

 13 

Table 1 Unchanged molecules in the rat cochlea exposed to AgNPs 14 

Functions/Properties Molecules 

Cell recruitment CD44 

Innate immunity TLR2 

Chemotaxis MCP2 

Tight junction-associated proteins VCAM1, Rac1, and MLCa 

Cellular signaling transduction Erk1/2, JNK, and p38 

Inflammation IL-1β, TNF-α, TNFR1, TNFR2 

Anti-inflammation IL-10 and TGF-β 
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MLCa: myosin light chain 1 

 2 

Discussion 3 

The current study showed that 0.4 % AgNPs but not 0.02 % AgNPs, up-regulated the expres-4 

sions of CD68, TLR4, MCP1, A20, and RNF11 in the strial basal cells, spiral ligament fibro-5 

cytes, and non-sensory supporting cells of Corti's organ. 0.4 % AgNPs had no effect on CD44, 6 

TLR2, MCP2, Rac1, myosin light chain, VCAM1, Erk1/2, JNK, p38, IL-1β, TNF-α, TNFR1, 7 

TNFR2, IL-10, or TGF-β. The toxicological mechanism of AgNPs is unclear. The Ag+ released 8 

from AgNPs was thought to be an important mediator involved in the pathological process 9 

associated with AgNPs exposure [35]. However, this is actually doubtful because no Ag+ re-10 

mains in either animal or human body after reacting with the Cl− and forming AgCl. The IC50 11 

for AgNO3 was lower than that for AgNPs [1]. Our unpublished data demonstrated that AgCl 12 

did not cause any hearing loss at the 2nd d through the 7th d post-intratympanic injection at the 13 

saturated concentration (520 μg/100 g). Therefore, our hypothesis is that the cytokine alteration 14 

in the current study is resulted from intact AgNPs rather than the disassociated Ag+. 15 

 16 

Increasing evidence demonstrate that the inner ear is an active immune organ rather than an 17 

'immunologically privileged organ' that was generally accepted previously [36]. Cochlear lat-18 

eral wall including the stria vascularis and spiral ligament has been reported as the primary site 19 

harbouring macrophages in the inner ear of human and mouse [37, 38]. In the current study, 20 

cells that showed mild staining for CD68 without ramified morphology were identified in the 21 
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stria vascularis and spiral ligament of rat cochlea exposed to dH2O, suggesting that the rat coch-1 

lea did not have typical tissue-resident macrophages and might have a different immune mech-2 

anism from the one in human. Macrophages were reportedly recruited into murine cochlea ex-3 

posed to noise and ototoxic drugs [39-42]. The current study detected a sparse appearance of 4 

ramified CD68-positive cells in the spiral ligament and mononuclear cells in the modiolus of 5 

cochlea exposed to 0.4 % AgNPs, implying that either the rat cochlea possessed a different 6 

innate immune system from the mouse or the AgNPs triggered different signaling pathways 7 

from noise and conventional ototoxic drugs. The sole up-regulation of MCP1 without sufficient 8 

cooperation with other molecules such as CD44, Rac1, myosin light chain, and VCAM1 might 9 

be the reason for failure in recruiting abundant macrophages into the cochlea [43-45]. Moreover, 10 

the unchanged levels of Erk1/2, JNK, and p38 did not provide the molecular basis for the ad-11 

hesion and migration of monocytes [46]. Instead, the expressions of CD68 in the strial basal 12 

cells, spiral ligament fibrocytes, and non-sensory supporting cells of Corti's organ were signif-13 

icantly up-regulated after 0.4 % AgNPs exposure. 14 

 15 

The up-regulated CD68 might confer macrophage-like functions on the strial basal cells and 16 

spiral ligament fibrocytes and enhance the immune activities of non-sensory supporting cells 17 

of Corti's organ. Non-sensory supporting cells of Corti's organ are indicated as microglia-like 18 

cells and may determine the fate of the auditory sensory epithelium because microglia are be-19 

lieved to be macrophages in the central nervous system and play an irreplaceable role in im-20 

mune surveillance [47-49]. CD68 was reportedly involved in vesicular trafficking to deliver the 21 

lipids to their proper intracellular compartments [50]. The current study suggested that CD68 22 
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might be implicated in the activation of TLR4 via caveolae trafficking operated by lipid raft 1 

and caveolin-1 phosphorylation [51]. Previous research indicated that AgNPs induced the ac-2 

cumulation of hyaluronan, the substrate of TLR4, in the cochlea [3]. TLR4 was also up-regu-3 

lated in the cochlea exposed to 0.4 % AgNPs in the current study. Theoretically, TLR4 activa-4 

tion triggers the NF-κB signaling pathway and finally up-regulates the expressions of inflam-5 

matory cytokines including IL-1β, TNF-α, and its receptors TNFR1 and TNFR2. However, 6 

neither the downstream cytokines of macrophages nor TLR4 activation was up-regulated in the 7 

cochlea exposed to AgNPs. Although it was unlikely that these pathways were never activated, 8 

it was predictable that certain cytokines were up-regulated at an early stage but suppressed 9 

afterwards. This possibility was supported by previous studies showing that AgNPs caused re-10 

versible changes to the permeability of biological barriers in the rat inner ear and transient hear-11 

ing loss that partially recovered as of the 7th d [1, 3]. 12 

 13 

A20, in the context of RNF11, has been shown to inhibit TLR-mediated inflammatory response 14 

and its induced NF-κB signaling pathway [16, 17]. The current study showed that A20 and 15 

RNF11 were significantly up-regulated in the strial basal cells, spiral ligament fibrocytes, and 16 

non-sensory supporting cells of Corti's organ of cochlea exposed to 0.4 % AgNPs, suggesting 17 

that A20 and RNF11 might play roles in maintaining cochlear homeostasis and thus preserving 18 

hearing [1, 3]. However, the incomplete hearing recovery in the high-frequency range in the 19 

AgNPs-exposed ear suggested that the protective effects of A20 and RNF11 might be limited. 20 

 21 

Conclusions 22 
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AgNPs might confer macrophage-like functions on the strial basal cells and spiral ligament 1 

fibrocytes and enhance the immune activities of non-sensory supporting cells of Corti's organ 2 

through the up-regulation of CD68, which might be involved in TLR4 activation. A20 and 3 

RNF11 played roles in maintaining cochlear homeostasis via negative regulation of the expres-4 

sions of inflammatory cytokines. The current study suggested that the rat cochlea might have a 5 

different immune mechanism from the one in human and mouse. 6 
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Legend 1 

Fig. 1 CD68+ cells in rat cochlea 7 d post-intratympanic injection of 0.4 % AgNPs shown by 2 

immunofluorescence confocal microscopy or immunohistochemistry. In the cochleae exposed 3 

to dH2O, the inner hair cells (IHCs) and pillar cells (PCs) of Corti's organ (CO) showed mod-4 

erate staining, while the outer hair cells (OHCs) and Deiters' cells (DCs) demonstrated ex-5 

tremely weak staining (H). The strial basal cells (SBCs), spiral ligament fibrocytes (SLFs), and 6 

spiral ganglion cells (SGCs) exhibited mild staining (D and F). In the cochleae exposed to 0.4 % 7 

AgNPs, the SBCs and SLFs (mainly Type III) in the 1st turn (A) and the IHCs and PCs of CO 8 

(G) displayed more intensive staining. Sparse ramified cells (C) and mononuclear cells (I) with 9 

CD68 staining were identified in the spiral ligament and the modiolus, respectively. However, 10 

the SBCs and SLFs in the 2nd and 3rd turns (B and C), SGCs (E), capillary endothelial cells 11 

(CaECs) (E), OHCs, and DCs (G) did not show any changes. Comparisons of staining intensity 12 

are shown in J and K. Scale bar = 30 μm in A-F, 20 μm in G, H, and the magnified image in I, 13 

and 80 μm in I 14 

 15 

Fig. 2 TLR4+ cells in rat cochlea 7 d post-intratympanic injection of 0.4 % AgNPs shown by 16 

immunofluorescence confocal microscopy or immunohistochemistry. In the cochleae exposed 17 

to dH2O, the strial basal cells (SBCs) and spiral ligament fibrocytes (SLFs) showed mild stain-18 

ing (D), while the spiral ganglion cells (SGCs), hair cells (HCs), pillar cells (PCs), and Deiters' 19 

cells (DCs) of Corti's organ (CO) demonstrated extremely weak staining (F and H). In the 20 

cochleae exposed to 0.4 % AgNPs, the SBCs and SLFs exhibited more intensive staining that 21 

was independent of the cochlear turn (A-C). In CO, the inner hair cells (IHCs), PCs, and DCs 22 
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displayed more intensive staining, but the outer hair cells (OHCs) did not (G). However, the 1 

SGCs did not show any changes (E). Comparisons of staining intensity are shown in I and J. 2 

Scale bar = 30 μm 3 

 4 

Fig. 3 MCP1+ cells in rat cochlea 7 d post-intratympanic injection of 0.4 % AgNPs shown by 5 

immunofluorescence confocal microscopy or immunohistochemistry. In the cochleae exposed 6 

to dH2O, the Deiters' cells (DCs) of Corti's organ (CO) showed intensive staining, while the 7 

inner hair cells (IHCs) and inner pillar cells (IPCs) exhibited moderate staining (H). The strial 8 

intermediate cells (SIMCs), strial basal cells (SBCs), spiral ganglion cells (SGCs), and outer 9 

hair cells (OHCs) and outer pillar cells (OPCs) of CO demonstrated mild staining, while the 10 

spiral ligament fibrocytes (SLFs) displayed extremely weak staining (D, F, and H). In the coch-11 

leae exposed to 0.4 % AgNPs, the SLFs showed more intensive staining that was independent 12 

of the cochlear turn, while the SIMCs, SBCs, and capillary endothelial cells (CaECs) demon-13 

strated more intensive staining in the 1st turn (A-C). In CO, the IPCs and DCs exhibited more 14 

intensive staining, but the hair cells (HCs) and OPCs did not (G). However, the SGCs did not 15 

show any changes (E). Comparisons of staining intensity are shown in I and J. Scale bar = 30 16 

μm 17 

 18 

Fig. 4 A20+ and RNF11+ cells in rat cochlea 7 d post-intratympanic injection of 0.4 % AgNPs 19 

shown by immunofluorescence confocal microscopy or immunohistochemistry. In the cochleae 20 

exposed to dH2O, the spiral ganglion cells (SGCs), inner hair cells (IHCs), pillar cells (PCs), 21 

and Deiters' cells (DCs) of Corti's organ (CO) showed intensive staining for A20 (J and N), 22 
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while the strial basal cells (SBCs), spiral ligament fibrocytes (SLFs), and outer hair cells (OHCs) 1 

demonstrated mild staining for A20 (D and N). The SBCs, SGCs, and inner pillar cells (IPCs) 2 

of CO exhibited intensive staining for RNF11, while the SLFs, hair cells (HCs), and outer pillar 3 

cells (OPCs) displayed mild staining for RNF11 (H, L, and P). The DCs showed extremely 4 

weak staining for RNF11 (P). In the cochleae exposed to 0.4 % AgNPs, the SBCs and SLFs 5 

demonstrated more intensive staining for A20 and RNF11 that was independent of the cochlear 6 

turn (A-C and E-G). In CO, the OHCs and DCs displayed more intensive staining for A20 (M), 7 

the OPCs and DCs exhibited more intensive staining for RNF11 (O). However, the SGCs and 8 

capillary endothelial cells (CaECs) did not show any changes in the staining of A20 and RNF11 9 

(I and K). Comparisons of staining intensity are shown in Q and R. Scale bar = 50 μm in A-H, 10 

20 μm in M and N, and 30 μm in I-L, O, and P 11 
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