248 research outputs found
Computing Distances between Probabilistic Automata
We present relaxed notions of simulation and bisimulation on Probabilistic
Automata (PA), that allow some error epsilon. When epsilon is zero we retrieve
the usual notions of bisimulation and simulation on PAs. We give logical
characterisations of these notions by choosing suitable logics which differ
from the elementary ones, L with negation and L without negation, by the modal
operator. Using flow networks, we show how to compute the relations in PTIME.
This allows the definition of an efficiently computable non-discounted distance
between the states of a PA. A natural modification of this distance is
introduced, to obtain a discounted distance, which weakens the influence of
long term transitions. We compare our notions of distance to others previously
defined and illustrate our approach on various examples. We also show that our
distance is not expansive with respect to process algebra operators. Although L
without negation is a suitable logic to characterise epsilon-(bi)simulation on
deterministic PAs, it is not for general PAs; interestingly, we prove that it
does characterise weaker notions, called a priori epsilon-(bi)simulation, which
we prove to be NP-difficult to decide.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Distribution-based bisimulation for labelled Markov processes
In this paper we propose a (sub)distribution-based bisimulation for labelled
Markov processes and compare it with earlier definitions of state and event
bisimulation, which both only compare states. In contrast to those state-based
bisimulations, our distribution bisimulation is weaker, but corresponds more
closely to linear properties. We construct a logic and a metric to describe our
distribution bisimulation and discuss linearity, continuity and compositional
properties.Comment: Accepted by FORMATS 201
Approximate reasoning for real-time probabilistic processes
We develop a pseudo-metric analogue of bisimulation for generalized
semi-Markov processes. The kernel of this pseudo-metric corresponds to
bisimulation; thus we have extended bisimulation for continuous-time
probabilistic processes to a much broader class of distributions than
exponential distributions. This pseudo-metric gives a useful handle on
approximate reasoning in the presence of numerical information -- such as
probabilities and time -- in the model. We give a fixed point characterization
of the pseudo-metric. This makes available coinductive reasoning principles for
reasoning about distances. We demonstrate that our approach is insensitive to
potentially ad hoc articulations of distance by showing that it is intrinsic to
an underlying uniformity. We provide a logical characterization of this
uniformity using a real-valued modal logic. We show that several quantitative
properties of interest are continuous with respect to the pseudo-metric. Thus,
if two processes are metrically close, then observable quantitative properties
of interest are indeed close.Comment: Preliminary version appeared in QEST 0
Multiwavelength Observations of the Hot DB Star PG 0112+104
We present a comprehensive multiwavelength analysis of the hot DB white dwarf
PG 0112+104. Our analysis relies on newly-acquired FUSE observations, on
medium-resolution FOS and GHRS data, on archival high-resolution GHRS
observations, on optical spectrophotometry both in the blue and around Halpha,
as well as on time-resolved photometry. From the optical data, we derive a
self-consistent effective temperature of 31,300+-500 K, a surface gravity of
log g = 7.8 +- 0.1 (M=0.52 Msun), and a hydrogen abundance of log N(H)/N(He) <
-4.0. The FUSE spectra reveal the presence of CII and CIII lines that
complement the previous detection of CII transitions with the GHRS. The
improved carbon abundance in this hot object is log N(C)/N(He) = -6.15 +- 0.23.
No photospheric features associated with other heavy elements are detected. We
reconsider the role of PG 0112+104 in the definition of the blue edge of the
V777 Her instability strip in light of our high-speed photometry, and contrast
our results with those of previous observations carried out at the McDonald
Observatory.Comment: 10 pages in emulateapj, 9 figures, accepted for publication in Ap
Park\u27s Tribolium Competition Experiments: A Non-equilibrium Species Coexistence Hypothesis
1. In this journal 35 years ago, P. H. Leslie, T. Park and D. B. Mertz reported competitive exclusion data for two Tribolium species. It is less well-known that they also reported \u27difficult to interpret\u27 coexistence data. We suggest that the species exclusion and the species coexistence are consequences of a stable coexistence two-cycle in the presence of two stable competitive exclusion equilibria. 2. A stage-structured insect population model for two interacting species forecasts that as interspecific interaction is increased there occurs a sequence of dynamic changes (bifurcations) in which the classic Lotka-Volterra-type scenario with two stable competitive exclusion equilibria is altered abruptly to a novel scenario with three locally stable entities; namely, two competitive exclusion equilibria and a stable coexistence cycle. This scenario is novel in that it predicts the competitive coexistence of two nearly identical species on a single limiting resource and does so under circumstances of increased interspecific competition. This prediction is in contradiction to classical tenets of competition theory
Quantifying Timing Leaks and Cost Optimisation
We develop a new notion of security against timing attacks where the attacker
is able to simultaneously observe the execution time of a program and the
probability of the values of low variables. We then show how to measure the
security of a program with respect to this notion via a computable estimate of
the timing leakage and use this estimate for cost optimisation.Comment: 16 pages, 2 figures, 4 tables. A shorter version is included in the
proceedings of ICICS'08 - 10th International Conference on Information and
Communications Security, 20-22 October, 2008 Birmingham, U
Lattice effects observed in chaotic dynamics of experimental populations
Animals and many plants are counted in discrete units. The collection of possible values (state space) of population numbers is thus a nonnegative integer lattice. Despite this fact, many mathematical population models assume a continuum of system states. The complex dynamics, such as chaos, often displayed by such continuous-state models have stimulated much ecological research; yet discretestate models with bounded population size can display only cyclic behavior. Motivated by data from a population experiment, we compared the predictions of discrete-state and continuous-state population models. Neither the discrete- nor continuous-state models completely account for the data. Rather, the observed dynamics are explained by a stochastic blending of the chaotic dynamics predicted by the continuous-state model and the cyclic dynamics predicted by the discretestate models. We suggest that such lattice effects could be an important component of natural population fluctuations. The discovery that simple deterministic population models can display complex aperiodi
Strong Completeness for Markovian Logics
In this paper we present Hilbert-style axiomatizations for three logics for reasoning about continuous-space Markov processes (MPs): (i) a logic for MPs defined for probability distributions on measurable state spaces, (ii) a logic for MPs defined for sub-probability distributions and (iii) a logic defined for arbitrary distributions.These logics are not compact so one needs infinitary rules in order to obtain strong completeness results.
We propose a new infinitary rule that replaces the so-called Countable Additivity Rule (CAR) currently used in the literature to address the problem of proving strong completeness for these and similar logics. Unlike the CAR, our rule has a countable set of instances; consequently it allows us to apply the Rasiowa-Sikorski lemma for establishing strong completeness. Our proof method is novel and it can be used for other logics as well
Mean-payoff Automaton Expressions
Quantitative languages are an extension of boolean languages that assign to
each word a real number. Mean-payoff automata are finite automata with
numerical weights on transitions that assign to each infinite path the long-run
average of the transition weights. When the mode of branching of the automaton
is deterministic, nondeterministic, or alternating, the corresponding class of
quantitative languages is not robust as it is not closed under the pointwise
operations of max, min, sum, and numerical complement. Nondeterministic and
alternating mean-payoff automata are not decidable either, as the quantitative
generalization of the problems of universality and language inclusion is
undecidable.
We introduce a new class of quantitative languages, defined by mean-payoff
automaton expressions, which is robust and decidable: it is closed under the
four pointwise operations, and we show that all decision problems are decidable
for this class. Mean-payoff automaton expressions subsume deterministic
mean-payoff automata, and we show that they have expressive power incomparable
to nondeterministic and alternating mean-payoff automata. We also present for
the first time an algorithm to compute distance between two quantitative
languages, and in our case the quantitative languages are given as mean-payoff
automaton expressions
Probabilistic Mobility Models for Mobile and Wireless Networks
International audienceIn this paper we present a probabilistic broadcast calculus for mobile and wireless networks whose connections are unreliable. In our calculus, broadcasted messages can be lost with a certain probability, and due to mobility the connection probabilities may change. If a network broadcasts a message from a location, it will evolve to a network distribution depending on whether nodes at other locations receive the message or not. Mobility of nodes is not arbitrary but guarded by a probabilistic mobility function (PMF), and we also define the notion of a weak bisimulation given a PMF. It is possible to have weak bisimular networks which have different probabilistic connectivity information. We furthermore examine the relation between our weak bisimulation and a minor variant of PCTL* [1]. Finally, we apply our calculus on a small example called the Zeroconf protocol [2]
- …