142 research outputs found

    Light-level geolocators reveal spatial variations in interactions between northern fulmars and fisheries

    Get PDF
    Seabird−fishery interactions are a common phenomenon of conservation concern. Here, we highlight how light-level geolocators provide promising opportunities to study these interactions. By examining raw light data, it is possible to detect encounters with artificial lights atnight, while conductivity data give insight on seabird behaviour during encounters. We used geolocator data from 336 northern fulmars Fulmarus glacialis tracked from 12 colonies in the North-East Atlantic and Barents Sea during the non-breeding season to (1) confirm that detections of artificial lights correspond to encounters with fishing vessels by comparing overlap between fishing effort and both the position of detections and the activity of birds during encounters, (2) assess spatial differences in the number of encounters among wintering areas and (3) test whethersome individuals forage around fishing vessels more often than others. Most (88.1%) of the track encountered artificial light at least once, with 9.5 ± 0.4 (SE) detections on average per 6 mo nonbreeding season. Encounters occurred more frequently where fishing effort was high, and birds from some colonies had higher probabilities of encountering lights at night. During encounters, fulmars spent more time foraging and less time resting, strongly suggesting that artificial lights reflect the activity of birds around fishing vessels. Inter-individual variability in the probability of encountering light was high (range: 0−68 encounters per 6 mo non-breeding season), meaning that some individuals were more often associated with fishing vessels than others, independently of their colony of origin. Our study highlights the potential of geolocators to study seabird−fisheryinteractions at a large scale and a low cost.publishedVersio

    The Speed of Sound in Methane under Conditions of the Thermal Boundary Layer of Uranus

    Full text link
    We present the first direct observations of acoustic waves in warm dense matter. We analyze wavenumber- and energy-resolved X-ray spectra taken from warm dense methane created by laser-heating a cryogenic liquid jet. X-ray diffraction and inelastic free electron scattering yield sample conditions of 0.3±\pm0.1 eV and 0.8±\pm0.1 g/cm3^3, corresponding to a pressure of \sim13 GPa and matching the conditions predicted in the thermal boundary layer between the inner and outer envelope of Uranus. Inelastic X-ray scattering was used to observe the collective oscillations of the ions. With a highly improved energy resolution of \sim50 meV, we could clearly distinguish the Brillouin peaks from the quasi-elastic Rayleigh feature. Data at different wavenumbers were used to obtain a sound speed of 5.9±\pm0.5 km/s, which enabled us to validate the use of Birch's law in this new parameter regime.Comment: 7 pages, 4 figures with supplementary informatio

    Seabirds reveal mercury distribution across the North Atlantic

    Get PDF
    Author contributionsC.A. and J.F. designed research; C.A., B. Moe, A.T., S.D., V.S.B., B. Merkel, J.Å., and J.F. performed research; C.A., B. Moe, M.B.-F., A.T., S.D., V.S.B., B. Merkel, J.Å., J.L., C.P.-P., and J.F. analyzed data; C.A., B.M., V.S.B., and J.F. sample and data collection, data coordination and management, statistical methodology; H.S. sample and data contribution and Data coordination and management; D.G., M.B.-F., F. Amélineau, F. Angelier, T.A.-N., O.C., S.C.-D., J.D., K.E., K.E.E., A.E., G.W.G., M.G., S.A.H., H.H.H., M.K.J., Y. Kolbeinsson, Y. Krasnov, M.L., J.L., S.-H.L., B.O., A.P., C.P.-P., T.K.R., G.H.S., P.M.T., T.L.T., and P.B. sample and data contribution; A.T., P.F. and S.D. sample and data contribution and statistical methodology; J.Å. statistical methodology; J.F. supervision; and C.A., B. Moe, H.S., D.G., A.T., S.D., V.S.B., B. Merkel, J.Å., F. Amélineau, F. Angelier, T.A.-N., O.C., S.C.-D., J.D., K.E., K.E.E., A.E., P.F., G.W.G., M.G., S.A.H., H.H.H., Y. Kolbeinsson, Y. Krasnov, S.-H.L., B.O., A.P., T.K.R., G.H.S., P.M.T., T.L.L., P.B., and J.F. wrote the paper.Peer reviewe

    Earlier colony arrival but no trend in hatching timing in two congeneric seabirds (Uria spp.) across the North Atlantic

    Get PDF
    A global analysis recently showed that seabird breeding phenology (as the timing of egg-laying and hatching) does not, on average, respond to temperature changes or advance with time (Keogan et al. 2018 Nat. Clim. Change8, 313–318). This group, the most threatened of all birds, is therefore prone to spatio-temporal mismatches with their food resources. Yet, other aspects of the breeding phenology may also have a marked influence on breeding success, such as the arrival date of adults at the breeding site following winter migration. Here, we used a large tracking dataset of two congeneric seabirds breeding in 14 colonies across 18° latitudes, to show that arrival date at the colony was highly variable between colonies and species (ranging 80 days) and advanced 1.4 days/year while timing of egg-laying remained unchanged, resulting in an increasing pre-laying duration between 2009 and 2018. Thus, we demonstrate that potentially not all components of seabird breeding phenology are insensitive to changing environmental conditions

    Six pelagic seabird species of the North Atlantic engage in a fly-and-forage strategy during their migratory movements

    Get PDF
    Bird migration is commonly defined as a seasonal movement between breeding and non-breeding grounds. It generally involves relatively straight and directed large-scale movements, with a latitudinal change, and specific daily activity patterns comprising less or no foraging and more traveling time. Our main objective was to describe how this general definition applies to seabirds. We investigated migration characteristics of 6 pelagic seabird species (little auk Alle alle, Atlantic puffin Fratercula arctica, common guillemot Uria aalge, Brünnich’s guillemot U. lomvia, black-legged kittiwake Rissa tridactyla and northern fulmars Fulmarus glacialis). We analysed an extensive geolocator positional and saltwater immersion dataset from 29 colonies in the North-East Atlantic and across several years (2008-2019). We used a novel method to identify active migration periods based on segmentation of time series of track characteristics (latitude, longitude, net-squared displacement). Additionally, we used the saltwater immersion data of geolocators to infer bird activity. We found that the 6 species had, on average, 3 to 4 migration periods and 2 to 3 distinct stationary areas during the non-breeding season. On average, seabirds spent the winter at lower latitudes than their breeding colonies and followed specific migration routes rather than non-directionally dispersing from their colonies. Differences in daily activity patterns were small between migratory and stationary periods, suggesting that all species continued to forage and rest while migrating, engaging in a ‘fly-and-forage’ migratory strategy. We thereby demonstrate the importance of habitats visited during seabird migrations as those that are not just flown over, but which may be important for re-fuelling.publishedVersio

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Meeting Paris agreement objectives will temper seabird winter distribution shifts in the North Atlantic Ocean

    Get PDF
    We explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a “no mitigation” scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine‐protected areas in a changing ocean

    Serotonin Reduction in Post-acute Sequelae of Viral Infection

    Get PDF
    Post-acute sequelae of COVID-19 (PASC, Long COVID ) pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes

    PLoS One

    Get PDF
    Quantitative analysis of the vascular network anatomy is critical for the understanding of the vasculature structure and function. In this study, we have combined microcomputed tomography (microCT) and computational analysis to provide quantitative three-dimensional geometrical and topological characterization of the normal kidney vasculature, and to investigate how 2 core genes of the Wnt/planar cell polarity, Frizzled4 and Frizzled6, affect vascular network morphogenesis. Experiments were performed on frizzled4 (Fzd4-/-) and frizzled6 (Fzd6-/-) deleted mice and littermate controls (WT) perfused with a contrast medium after euthanasia and exsanguination. The kidneys were scanned with a high-resolution (16 μm) microCT imaging system, followed by 3D reconstruction of the arterial vasculature. Computational treatment includes decomposition of 3D networks based on Diameter-Defined Strahler Order (DDSO). We have calculated quantitative (i) Global scale parameters, such as the volume of the vasculature and its fractal dimension (ii) Structural parameters depending on the DDSO hierarchical levels such as hierarchical ordering, diameter, length and branching angles of the vessel segments, and (iii) Functional parameters such as estimated resistance to blood flow alongside the vascular tree and average density of terminal arterioles. In normal kidneys, fractal dimension was 2.07±0.11 (n = 7), and was significantly lower in Fzd4-/- (1.71±0.04; n = 4), and Fzd6-/- (1.54±0.09; n = 3) kidneys. The DDSO number was 5 in WT and Fzd4-/-, and only 4 in Fzd6-/-. Scaling characteristics such as diameter and length of vessel segments were altered in mutants, whereas bifurcation angles were not different from WT. Fzd4 and Fzd6 deletion increased vessel resistance, calculated using the Hagen-Poiseuille equation, for each DDSO, and decreased the density and the homogeneity of the distal vessel segments. Our results show that our methodology is suitable for 3D quantitative characterization of vascular networks, and that Fzd4 and Fzd6 genes have a deep patterning effect on arterial vessel morphogenesis that may determine its functional efficiency
    corecore