48 research outputs found

    Genital and lingual warts in small cetaceans from coastal Peru

    Get PDF
    We report on genital warts in dusky dolphins Lagenorhynchus obscurus, long-snouted common dolphins Delphinus capensis, bottlenose dolphins Tursiops truncatus and Burmeister's porpoises Phocoena spinipinnis caught in fisheries off central Peru. Lesions were observed inside the genital slit, on the skin adjacent to it, on the penis and on the vagina. Macro- and microscopical features of the lesions resemble those of benign genital warts associated with papillomavirus infection in humans. Genital warts from L. obscurus and P. spinipinnis contained nuclei which stained positive for genus-specific papillomavirus structural antigens, though weakly in the latter species. These data suggest that papillomavirus(es) may be the etiological agent(s) of the disease. The prevalence of the lesions in 130 small cetaceans was high: 66.7% (confidence interval, CI, 57.0 to 74.0%) in L. obscurus (n = 78), 50% in D. capensis (n = 10), 33% in T. truncatus (n = 9) and 48.5% (CI 33.0 to 64.0%) in P. spinipinnis (n = 33). This suggests a venereal transmission of the disease, as in humans. Sexual variation in wart prevalence was found in L. obscurus and P. spinipinnis with males being 2 and 3 times more infected than females, respectively. No correlation was observed between body length (as a measure of age) and wart prevalence, suggesting that no strong and long-lasting immunity was induced in affected animals or that they may have been infected by different types of papillomaviruses. Lingual tumours were seen in 1 D. capensis

    Beta-HPV E6 Contributes To Skin Cancer by Hindering DNA Repair

    Get PDF
    <div><p>Recent work has explored a putative role for the E6 protein from some β-human papillomavirus genus (β-HPVs) in the development of non-melanoma skin cancers, specifically β-HPV 5 and 8 E6. Because these viruses are not required for tumor maintenance, they are hypothesized to act as co-factors that enhance the mutagenic capacity of UV-exposure by disrupting the repair of the resulting DNA damage. Supporting this proposal, we have previously demonstrated that UV damage signaling is hindered by β-HPV 5 and 8 E6 resulting in an increase in both thymine dimers and UV-induced double strand breaks (DSBs). Here we show that β-HPV 5 and 8 E6 further disrupt the repair of these DSBs and provide a mechanism for this attenuation. By binding and destabilizing a histone acetyltransferase, p300, β-HPV 5 and 8 E6 reduce the enrichment of the transcription factor at the promoter of two genes critical to the homology dependent repair of DSBs (BRCA1 and BRCA2). The resulting diminished BRCA1/2 transcription not only leads to lower protein levels but also curtails the ability of these proteins to form repair foci at DSBs. Using a GFP-based reporter, we confirm that this reduced foci formation leads to significantly diminished homology dependent repair of DSBs. By deleting the p300 binding domain of β-HPV 8 E6, we demonstrate that the loss of robust repair is dependent on viral-mediated degradation of p300 and confirm this observation using a combination of p300 mutants that are β-HPV 8 E6 destabilization resistant and p300 knock-out cells. In conclusion, this work establishes an expanded ability of β-HPV 5 and 8 E6 to attenuate UV damage repair, thus adding further support to the hypothesis that β-HPV infections play a role in skin cancer development by increasing the oncogenic potential of UV exposure.</p></div

    The mammalian gene function resource: The International Knockout Mouse Consortium

    Get PDF
    In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed highthroughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research

    Finding synergies for the 3Rs – Repeated dose toxicity testing: Report from an EPAA partners' forum

    Get PDF
    The European Partnership for Alternative Approaches to Animal Testing (EPAA) convened a Partners' Forum on repeated dose toxicity (RDT) testing to identify synergies between industrial sectors and stakeholders along with opportunities to progress these in existing research frameworks. Although RTD testing is not performed across all industrial sectors, the OECD accepted tests can provide a rich source of information and play a pivotal role for safety decisions relating to the use of chemicals. Currently there are no validated alternatives to repeated dose testing and a direct one-to-one replacement is not appropriate. However, there are many projects and initiatives at the international level which aim to implement various aspects of replacement, reduction and refinement (the 3Rs) in RDT testing. Improved definition of use, through better problem formulation, aligned to harmonisation of regulations is a key area, as is the more rapid implementation of alternatives into the legislative framework. Existing test designs can be optimised to reduce animal use and increase information content. Greater use of exposure-led decisions and improvements in dose selection will be beneficial. In addition, EPAA facilitates sharing of case studies demonstrating the use of Next Generation Risk Assessment applying various New Approach Methodologies to assess RDT

    The mammalian gene function resource: the International Knockout Mouse Consortium.

    Get PDF
    In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed high-throughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research

    The mammalian gene function resource: the international knockout mouse consortium

    Full text link

    Expression of the papillomavirus E2 protein in HeLa cells leads to apoptosis.

    No full text
    The papillomavirus E2 protein plays a central role in the viral life cycle as it regulates both transcription and replication of the viral genome. In this study, we showed that transient expression of bovine papillomavirus type 1 or human papillomavirus type 18 (HPV18) E2 proteins in HeLa cells activated the transcriptional activity of p53 through at least two pathways. The first one involved the binding of E2 to its recognition elements located in the integrated viral P105 promoter. E2 binding consequently repressed transcription of the endogenous HPV18 E6 oncogene, whose product has been shown previously to promote p53 degradation. The second pathway did not require specific DNA binding by E2. Expression of E2 induced drastic physiological changes, as evidenced by a high level of cell death by apoptosis and G1 arrest. Overexpression of a p53 trans-dominant-negative mutant abolished both E2-induced p53 transcriptional activation and E2-mediated G1 growth arrest, but showed no effect on E2-triggered apoptosis. These results suggest that the effects of E2 on cell cycle progression and cell death follow distinct pathways involving two different functions of p53

    Transcriptional activation of several heterologous promoters by the E6 protein of human papillomavirus type 16.

    No full text
    The E6 protein of human papillomavirus type 16 (HPV-16), along with E7, is responsible for the HPV-induced malignant transformation of the cervix. However, the mechanism of this transformation activity is not well understood. We investigated whether the entire E6 protein of HPV-16 could act as an activator of transcription. Experiments in which NIH 3T3 cells were cotransfected with an E6 expression vector together with the reporter chloramphenicol acetyltransferase (CAT) gene linked to various minimal promoters indicated that E6 could activate transcription from a series of viral TATA-containing promoters. Mutations or deletions that affected all upstream regulatory elements present in the thymidine kinase (TK) promoter, such as the GC and CAAT boxes, reduced the level of E6-induced transcription. However, compared with the basal level, these truncated promoters were still activated by E6. Although site-directed mutations of the TATA sequence present in the TK or human immunodeficiency virus long terminal repeat promoters reduced the level of basal transcription, they did not abolish the E6-mediated activation. Moreover, E6 could restore almost completely the full level of wild-type E6-induced transcription as long as the upstream regulatory elements (GC/CAAT in the TK promoter, NF-kappa B in the human immunodeficiency virus long terminal repeat) were intact. This dual interaction of HPV-16 E6 is reminiscent of the activity of a coactivator
    corecore