183 research outputs found

    Assessment of Financial Risk Prediction Models with Multi-criteria Decision Making Methods

    Get PDF
    A wide range of classification models have been explored for financial risk prediction, but conclusions on which technique behaves better may vary when different performance evaluation measures are employed. Accordingly, this paper proposes the use of multiple criteria decision making tools in order to give a ranking of algorithms. More specifically, the selection of the most appropriate credit risk prediction method is here modeled as a multi-criteria decision making problem that involves a number of performance measures (criteria) and classification techniques (alternatives). An empirical study is carried out to evaluate the performance of ten algorithms over six real-life credit risk data sets. The results reveal that the use of a unique performance measure may lead to unreliable conclusions, whereas this situation can be overcome by the application of multi-criteria decision making techniques

    Four Zero Texture Fermion Mass Matrices in SO(10) GUT

    Full text link
    We attempt the integration of the phenomenologically successful four zero texture of fermion mass matrices with the renormalizable SO(10) GUT. The resulting scenario is found to be highly predictive. Firstly, we examine the phenomenological implications of a class of the lepton mass matrices with parallel texture structures and obtain interesting constraints on the parameters of the charged lepton and the neutrino mass matrices. We combine these phenomenological constraints with the constraints obtained from SO(10) GUT to reduce the number of the free parameters and to further constrain the allowed ranges of the free parameters. The solar/atmospheric mixing angles obtained in this analysis are in fairly good agreement with the data.Comment: 14 pages, 3 figures, 1 tabl

    Monotonicity of quantum ground state energies: Bosonic atoms and stars

    Full text link
    The N-dependence of the non-relativistic bosonic ground state energy is studied for quantum N-body systems with either Coulomb or Newton interactions. The Coulomb systems are "bosonic atoms," with their nucleus fixed, and the Newton systems are "bosonic stars". In either case there exists some third order polynomial in N such that the ratio of the ground state energy to the respective polynomial grows monotonically in N. Some applications of these new monotonicity results are discussed

    Search for Neutral Q-balls in Super-Kamiokande II

    Full text link
    A search for Q-balls induced groups of successive contained events has been carried out in Super-Kamiokande II with 541.7 days of live time. Neutral Q-balls would emit pions when colliding with nuclei, generating a signal of successive contained pion events along a track. No candidate for successive contained event groups has been found in Super-Kamiokande II, so upper limits on the possible flux of such Q-balls have been obtained.Comment: 5 pages, 5 figures, Submitted to Phys. Lett.

    A search for periodic modulations of the solar neutrino flux in Super-Kamiokande-I

    Full text link
    A search for periodic modulations of the solar neutrino flux was performed using the Super-Kamiokande-I data taken from May 31st, 1996 to July 15th, 2001. The detector's capability of measuring the exact time of events, combined with a relatively high yield of solar neutrino events, allows a search for short-time variations in the observed flux. We employed the Lomb test to look for periodic modulations of the observed solar neutrino flux. The obtained periodogram is consistent with statistical fluctuation and no significant periodicity was found

    Completion Dissection or Observation for Sentinel-Node Metastasis in Melanoma.

    Get PDF
    Sentinel-lymph-node biopsy is associated with increased melanoma-specific survival (i.e., survival until death from melanoma) among patients with node-positive intermediate-thickness melanomas (1.2 to 3.5 mm). The value of completion lymph-node dissection for patients with sentinel-node metastases is not clear. In an international trial, we randomly assigned patients with sentinel-node metastases detected by means of standard pathological assessment or a multimarker molecular assay to immediate completion lymph-node dissection (dissection group) or nodal observation with ultrasonography (observation group). The primary end point was melanoma-specific survival. Secondary end points included disease-free survival and the cumulative rate of nonsentinel-node metastasis. Immediate completion lymph-node dissection was not associated with increased melanoma-specific survival among 1934 patients with data that could be evaluated in an intention-to-treat analysis or among 1755 patients in the per-protocol analysis. In the per-protocol analysis, the mean (±SE) 3-year rate of melanoma-specific survival was similar in the dissection group and the observation group (86±1.3% and 86±1.2%, respectively; P=0.42 by the log-rank test) at a median follow-up of 43 months. The rate of disease-free survival was slightly higher in the dissection group than in the observation group (68±1.7% and 63±1.7%, respectively; P=0.05 by the log-rank test) at 3 years, based on an increased rate of disease control in the regional nodes at 3 years (92±1.0% vs. 77±1.5%; P<0.001 by the log-rank test); these results must be interpreted with caution. Nonsentinel-node metastases, identified in 11.5% of the patients in the dissection group, were a strong, independent prognostic factor for recurrence (hazard ratio, 1.78; P=0.005). Lymphedema was observed in 24.1% of the patients in the dissection group and in 6.3% of those in the observation group. Immediate completion lymph-node dissection increased the rate of regional disease control and provided prognostic information but did not increase melanoma-specific survival among patients with melanoma and sentinel-node metastases. (Funded by the National Cancer Institute and others; MSLT-II ClinicalTrials.gov number, NCT00297895 .)

    Co-evolution, opportunity seeking and institutional change: Entrepreneurship and the Indian telecommunications industry 1923-2009

    Get PDF
    "This is an Author's Original Manuscript of an article submitted for consideration in Business History [copyright Taylor & Francis]; Business History is available online at http://www.tandfonline.com/." 10.1080/00076791.2012.687538In this paper, we demonstrate the importance for entrepreneurship of historical contexts and processes, and the co-evolution of institutions, practices, discourses and cultural norms. Drawing on discourse and institutional theories, we develop a model of the entrepreneurial field, and apply this in analysing the rise to global prominence of the Indian telecommunications industry. We draw on entrepreneurial life histories to show how various discourses and discursive processes ultimately worked to generate change and the creation of new business opportunities. We propose that entrepreneurship involves more than individual acts of business creation, but also implies collective endeavours to shape the future direction of the entrepreneurial field

    Supplemental Association of Clonal Hematopoiesis With Incident Heart Failure

    Get PDF
    Background: Age-related clonal hematopoiesis of indeterminate potential (CHIP), defined as clonally expanded leukemogenic sequence variations (particularly in DNMT3A, TET2, ASXL1, and JAK2) in asymptomatic individuals, is associated with cardiovascular events, including recurrent heart failure (HF). Objectives: This study sought to evaluate whether CHIP is associated with incident HF. Methods: CHIP status was obtained from whole exome or genome sequencing of blood DNA in participants without prevalent HF or hematological malignancy from 5 cohorts. Cox proportional hazards models were performed within each cohort, adjusting for demographic and clinical risk factors, followed by fixed-effect meta-analyses. Large CHIP clones (defined as variant allele frequency >10%), HF with or without baseline coronary heart disease, and left ventricular ejection fraction were evaluated in secondary analyses. Results: Of 56,597 individuals (59% women, mean age 58 years at baseline), 3,406 (6%) had CHIP, and 4,694 developed HF (8.3%) over up to 20 years of follow-up. CHIP was prospectively associated with a 25% increased risk of HF in meta-analysis (hazard ratio: 1.25; 95% confidence interval: 1.13-1.38) with consistent associations across cohorts. ASXL1, TET2, and JAK2 sequence variations were each associated with an increased risk of HF, whereas DNMT3A sequence variations were not associated with HF. Secondary analyses suggested large CHIP was associated with a greater risk of HF (hazard ratio: 1.29; 95% confidence interval: 1.15-1.44), and the associations for CHIP on HF with and without prior coronary heart disease were homogenous. ASXL1 sequence variations were associated with reduced left ventricular ejection fraction. Conclusions: CHIP, particularly sequence variations in ASXL1, TET2, and JAK2, represents a new risk factor for HF

    Gap-filling eddy covariance methane fluxes:Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands

    Get PDF
    Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET)

    Quorum sensing:Implications on rhamnolipid biosurfactant production

    Get PDF
    corecore