7 research outputs found

    Prominent microglial inclusions in transgenic mouse models of α-synucleinopathy that are distinct from neuronal lesions.

    Get PDF
    Alpha-synucleinopathies are a group of progressive neurodegenerative disorders, characterized by intracellular deposits of aggregated α-synuclein (αS). The clinical heterogeneity of these diseases is thought to be attributed to conformers (or strains) of αS but the contribution of inclusions in various cell types is unclear. The aim of the present work was to study αS conformers among different transgenic (TG) mouse models of α-synucleinopathies. To this end, four different TG mouse models were studied (Prnp-h[A53T]αS; Thy1-h[A53T]αS; Thy1-h[A30P]αS; Thy1-mαS) that overexpress human or murine αS and differed in their age-of-symptom onset and subsequent disease progression. Postmortem analysis of end-stage brains revealed robust neuronal αS pathology as evidenced by accumulation of αS serine 129 (p-αS) phosphorylation in the brainstem of all four TG mouse lines. Overall appearance of the pathology was similar and only modest differences were observed among additionally affected brain regions. To study αS conformers in these mice, we used pentameric formyl thiophene acetic acid (pFTAA), a fluorescent dye with amyloid conformation-dependent spectral properties. Unexpectedly, besides the neuronal αS pathology, we also found abundant pFTAA-positive inclusions in microglia of all four TG mouse lines. These microglial inclusions were also positive for Thioflavin S and showed immunoreactivity with antibodies recognizing the N-terminus of αS, but were largely p-αS-negative. In all four lines, spectral pFTAA analysis revealed conformational differences between microglia and neuronal inclusions but not among the different mouse models. Concomitant with neuronal lesions, microglial inclusions were already present at presymptomatic stages and could also be induced by seeded αS aggregation. Although nature and significance of microglial inclusions for human α-synucleinopathies remain to be clarified, the previously overlooked abundance of microglial inclusions in TG mouse models of α-synucleinopathy bears importance for mechanistic and preclinical-translational studies

    Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures.

    Get PDF
    BACKGROUND: Proteopathic brain lesions are a hallmark of many age-related neurodegenerative diseases including synucleinopathies and develop at least a decade before the onset of clinical symptoms. Thus, understanding of the initiation and propagation of such lesions is key for developing therapeutics to delay or halt disease progression. METHODS: Alpha-synuclein (αS) inclusions were induced in long-term murine and human slice cultures by seeded aggregation. An αS seed-recognizing human antibody was tested for blocking seeding and/or spreading of the αS lesions. Release of neurofilament light chain (NfL) into the culture medium was assessed. RESULTS: To study initial stages of α-synucleinopathies, we induced αS inclusions in murine hippocampal slice cultures by seeded aggregation. Induction of αS inclusions in neurons was apparent as early as 1week post-seeding, followed by the occurrence of microglial inclusions in vicinity of the neuronal lesions at 2-3 weeks. The amount of αS inclusions was dependent on the type of αS seed and on the culture's genetic background (wildtype vs A53T-αS genotype). Formation of αS inclusions could be monitored by neurofilament light chain protein release into the culture medium, a fluid biomarker of neurodegeneration commonly used in clinical settings. Local microinjection of αS seeds resulted in spreading of αS inclusions to neuronally connected hippocampal subregions, and seeding and spreading could be inhibited by an αS seed-recognizing human antibody. We then applied parameters of the murine cultures to surgical resection-derived adult human long-term neocortical slice cultures from 22 to 61-year-old donors. Similarly, in these human slice cultures, proof-of-principle induction of αS lesions was achieved at 1week post-seeding in combination with viral A53T-αS expressions. CONCLUSION: The successful translation of these brain cultures from mouse to human with the first reported induction of human αS lesions in a true adult human brain environment underlines the potential of this model to study proteopathic lesions in intact mouse and now even aged human brain environments

    A Novel Expression Profile of Cell Cycle and DNA Repair Proteins in Nonfunctioning Pituitary Adenomas

    No full text
    Tanriover, Necmettin/0000-0001-7628-9443; Kadioglu, Pinar/0000-0002-8329-140X; comunoglu, nil/0000-0002-2319-1757WOS: 000519375300002PubMed: 31828584The molecular mechanisms underlying the formation of nonfunctioning pituitary adenomas (NFAs) are largely unknown. in this study, we aimed to understand the relationship between NFAs and functional pituitary adenomas and the possible role of proteins involved in cell cycle, senescence, and DNA damage control mechanisms in the etiology of NFA. We analyzed pATM-S1981, pRb-S608, Rb, pE2F1-S364, p16, E2F1, p73, cyclin D1, and CHEK2 protein expression (in a group of 20 patients with acromegaly, 18 patients with Cushing's disease (CD), and 29 NFA patients) by immunohistochemistry and their relevant mRNA expression by qRT-PCR (in a group of 7 patients with acromegaly, 7 patients with CD, and 7 NFA patients). the clinical and histopathological results on the patients were statistically evaluated. pE2F1-S364 protein expression in the CD group was significantly lower than that in the NFA and acromegaly groups (p = 0.025, p = 0.034, respectively). However, the expression of the p16 protein was lower than in the NFA group than in the CD and acromegaly groups (p = 0.030, p = 0.033, respectively), and E2F1 protein expression was significantly higher in the NFA group than in the CD group (p = 0.025). p73 protein expression in patients with acromegaly was significantly higher (p = 0.031) than that in the CD group. CHEK2 mRNA expression in the CD group was significantly higher than that in the acromegaly group (p = 0.012). the selective and tumor-specific associations between E2F1, pE2F1-S364, CHEK2, and p73 mRNA and protein levels indicate their involvement in pituitary adenoma formation in NFA, CD, and acromegaly patients.Research Fund of the Istanbul UniversityIstanbul University [2017-25404] Funding Source: Medlin

    Comparison of the Effects of Electroacupuncture and Melatonin on Nerve Regeneration in Experimentally Nerve-Damaged Rats

    No full text
    Background : Development of methods to accelerate nerve regeneration in peripheral nerve damage is important. Electroacupuncture is a new therapeutic method that combines traditional acupuncture with modern electrotherapy. Melatonin has been shown to reduce nerve damage. Objectives: In this study, we aimed to determine and compare the therapeutic effects of electroacupuncture and melatonin on rat sciatic nerve injury. Methods : A total of 56 adult male Wistar Albino rats were divided into four study groups with 14 animals in each group: intact control (group I), subcutaneous saline (group II), subcutaneous melatonin (group III), and electroacupuncture (group IV). Surgical procedure including unilateral (right) sciatic nerve injury was applied to groups II, III, and IV. Saline and melatonin started immediately after surgery for six weeks, while electroacupuncture was given two weeks after surgery for 3 weeks. Functional and histological assessments were used as outcome measurements. Results : Sciatic nerve damage caused a significant decrease in nerve conduction velocity. Both electroacupuncture treatment and melatonin treatment significantly increased the nerve conduction velocity. Both sciatic functional recovery and histological regeneration were faster in these treatment groups compared to the saline. However, no significant difference was observed between the two treatment groups. Conclusion : Electroacupuncture and melatonin are promising alternative treatment strategies for peripheral nerve damage and can be examined in detail in future studies

    SNPs of miR-23b, miR-107 and HMGA2 and their Relations with the Response to Medical Treatment in Acromegaly Patients

    No full text
    Introduction Acromegaly is a chronic disease of increased growth hormone (GH) secretion and elevated insulin-like growth factor-I (IGF-I) levels induced by a pituitary adenoma. HMGA2 (high mobility group A2) and AIP (aryl hydrocarbon receptor-interacting protein) expression levels are related to GH-secreting adenomas, and also a response to Somatostatin Analogs (SSAs). We studied SNPs in miR-107 and miR-23b that related with AIP and HMGA2 genes respectively and control their expression, and also SNP in the 3'UTR of HMGA2 gene. Our aim was to investigate genotype distributions of the studied SNPs, as well as the possible relationship between disease and/or response to SSAs treatment in patients with acromegaly
    corecore