161 research outputs found

    A machine learning approach to Structural Health Monitoring with a view towards wind turbines

    Get PDF
    The work of this thesis is centred around Structural Health Monitoring (SHM) and is divided into three main parts. The thesis starts by exploring di�erent architectures of auto-association. These are evaluated in order to demonstrate the ability of nonlinear auto-association of neural networks with one nonlinear hidden layer as it is of great interest in terms of reduced computational complexity. It is shown that linear PCA lacks performance for novelty detection. The novel key study which is revealed ampli�es that single hidden layer auto-associators are not performing in a similar fashion to PCA. The second part of this study concerns formulating pattern recognition algorithms for SHM purposes which could be used in the wind energy sector as SHM regarding this research �eld is still in an embryonic level compared to civil and aerospace engineering. The purpose of this part is to investigate the e�ectiveness and performance of such methods in structural damage detection. Experimental measurements such as high frequency responses functions (FRFs) were extracted from a 9m WT blade throughout a full-scale continuous fatigue test. A preliminary analysis of a model regression of virtual SCADA data from an o�shore wind farm is also proposed using Gaussian processes and neural network regression techniques. The third part of this work introduces robust multivariate statistical methods into SHM by inclusively revealing how the in uence of environmental and operational variation a�ects features that are sensitive to damage. The algorithms that are described are the Minimum Covariance Determinant Estimator (MCD) and the Minimum Volume Enclosing Ellipsoid (MVEE). These robust outlier methods are inclusive and in turn there is no need to pre-determine an undamaged condition data set, o�ering an important advantage over other multivariate methodologies. Two real life experimental applications to the Z24 bridge and to an aircraft wing are analysed. Furthermore, with the usage of the robust measures, the data variable correlation reveals linear or nonlinear connections

    On topological data analysis for structural dynamics: an introduction to persistent homology

    Full text link
    Topological methods can provide a way of proposing new metrics and methods of scrutinising data, that otherwise may be overlooked. In this work, a method of quantifying the shape of data, via a topic called topological data analysis will be introduced. The main tool within topological data analysis (TDA) is persistent homology. Persistent homology is a method of quantifying the shape of data over a range of length scales. The required background and a method of computing persistent homology is briefly discussed in this work. Ideas from topological data analysis are then used for nonlinear dynamics to analyse some common attractors, by calculating their embedding dimension, and then to assess their general topologies. A method will also be proposed, that uses topological data analysis to determine the optimal delay for a time-delay embedding. TDA will also be applied to a Z24 Bridge case study in structural health monitoring, where it will be used to scrutinise different data partitions, classified by the conditions at which the data were collected. A metric, from topological data analysis, is used to compare data between the partitions. The results presented demonstrate that the presence of damage alters the manifold shape more significantly than the effects present from temperature

    On robust regression analysis as a means of exploring environmental and operational conditions for SHM data

    Get PDF
    In the data-based approach to structural health monitoring (SHM), the absence of data from damaged structures in many cases forces a dependence on novelty detection as a means of diagnosis. Unfortunately, this means that benign variations in the operating or environmental conditions of the structure must be handled very carefully, lest they lead to false alarms. If novelty detection is implemented in terms of outlier detection, the outliers may arise in the data as the result of both benign and malign causes and it is important to understand their sources. Comparatively recent developments in the field of robust regression have the potential to provide ways of exploring and visualising SHM data as a means of shedding light on the different origins of outliers. The current paper will illustrate the use of robust regression for SHM data analysis through experimental data acquired from the Z24 and Tamar Bridges, although the methods are general and not restricted to SHM or civil infrastructure

    Is it worth changing pattern recognition methods for structural health monitoring?

    Get PDF
    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data

    Simplifying transformations for nonlinear systems: Part II, statistical analysis of harmonic cancellation

    Get PDF
    The first paper in this short sequence described the idea of a simplifying transformation and applied the concept to a numerical optimisation-based variant of normal form analysis. The idea of the numerical normal form transformation was simply to eliminate or reduce the contribution of a pre-defined set of harmonics in the system response. It was shown that reducing the defined harmonics could lead to amplification of other components of the response. The idea of the current paper is to conduct a Monte Carlo worst-case analysis to investigate how badly unconstrained harmonics might be amplified by the optimisation

    Robust methods for outlier detection and regression for SHM applications.

    Get PDF
    In this paper, robust statistical methods are presented for the data-based approach to structural health monitoring (SHM). The discussion initially focuses on the high level removal of the ‘masking effect’ of inclusive outliers. Multiple outliers commonly occur when novelty detection in the form of unsupervised learning is utilised as a means of damage diagnosis; then benign variations in the operating or environmental conditions of the structure must be handled very carefully, as it is possible that they can lead to false alarms. It is shown that recent developments in the field of robust regression can provide a means of exploring and visualising SHM data as a tool for exploring the different characteristics of outliers, and removing the effects of benign variations. The paper is not, in any sense, a survey; it is an overview and summary of recent work by the authors

    On the usage of active learning for SHM

    Get PDF
    The key element of this work is to demonstrate a strategy for using pattern recognition algorithms to investigate correlations between feature variables for Structural Health Monitoring (SHM). The task will take advantage of data from a bridge. An informative chain of artificial intelligence tools will allow an active learning interaction between the unfolded shapes of the manifold of online data by characterising the physical shape between variables. In many data mining and machine learning applications, there is a significant supply of unlabelled data but an important undersupply of labelled data. Semi-supervised active learning, which combines both labelled and unlabelled data can offer serious access to useful information and may be the crucial element in successful decision making, regarding the health of structures

    Model selection and parameter estimation in structural dynamics using approximate Bayesian computation

    Get PDF
    This paper will introduce the use of the approximate Bayesian computation (ABC) algorithm for model selection and parameter estimation in structural dynamics. ABC is a likelihood-free method typically used when the likelihood function is either intractable or cannot be approached in a closed form. To circumvent the evaluation of the likelihood function, simulation from a forward model is at the core of the ABC algorithm. The algorithm offers the possibility to use different metrics and summary statistics representative of the data to carry out Bayesian inference. The efficacy of the algorithm in structural dynamics is demonstrated through three different illustrative examples of nonlinear system identification: cubic and cubic-quintic models, the Bouc-Wen model and the Duffing oscillator. The obtained results suggest that ABC is a promising alternative to deal with model selection and parameter estimation issues, specifically for systems with complex behaviours

    A Meta-Learning Approach to Population-Based Modelling of Structures

    Full text link
    A major problem of machine-learning approaches in structural dynamics is the frequent lack of structural data. Inspired by the recently-emerging field of population-based structural health monitoring (PBSHM), and the use of transfer learning in this novel field, the current work attempts to create models that are able to transfer knowledge within populations of structures. The approach followed here is meta-learning, which is developed with a view to creating neural network models which are able to exploit knowledge from a population of various tasks to perform well in newly-presented tasks, with minimal training and a small number of data samples from the new task. Essentially, the method attempts to perform transfer learning in an automatic manner within the population of tasks. For the purposes of population-based structural modelling, the different tasks refer to different structures. The method is applied here to a population of simulated structures with a view to predicting their responses as a function of some environmental parameters. The meta-learning approach, which is used herein is the model-agnostic meta-learning (MAML) approach; it is compared to a traditional data-driven modelling approach, that of Gaussian processes, which is a quite effective alternative when few data samples are available for a problem. It is observed that the models trained using meta-learning approaches, are able to outperform conventional machine learning methods regarding inference about structures of the population, for which only a small number of samples are available. Moreover, the models prove to learn part of the physics of the problem, making them more robust than plain machine-learning algorithms. Another advantage of the methods is that the structures do not need to be parametrised in order for the knowledge transfer to be performed
    corecore