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Abstract: In this paper, robust statistical methods are presented for the  
data-based approach to structural health monitoring (SHM). The discussion 
initially focuses on the high level removal of the ‘masking effect’ of inclusive 
outliers. Multiple outliers commonly occur when novelty detection in the form 
of unsupervised learning is utilised as a means of damage diagnosis; then 
benign variations in the operating or environmental conditions of the structure 
must be handled very carefully, as it is possible that they can lead to false 
alarms. It is shown that recent developments in the field of robust regression 
can provide a means of exploring and visualising SHM data as a tool for 
exploring the different characteristics of outliers, and removing the effects of 
benign variations. The paper is not, in any sense, a survey; it is an overview and 
summary of recent work by the authors. 
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1 Introduction 

When SHM technology is adopted as a tool for monitoring a structure, it is often 
desirable that the system will run continuously and online. This means that the 
monitoring system will be running as the structure of interest experiences benign changes 
like environmental and operational variations (EOVs) that should not be flagged as 
damage. Such benign effects on diagnostic data are sometimes referred to as 
‘confounding influences’. Civil infrastructure, like bridges or wind turbines, are 
particularly susceptible to confounding influences due to temperature, humidity, ice, 
wind or traffic loading for bridges as an example (Cross, 2012; Cross et al., 2013; Peeters 
et al., 2001; Alampalli, 2000; Cornwell et al., 1999). 



   

 

   

   
 

   

   

 

   

    Robust methods for outlier detection and regression for SHM applications 5    
 

    
 
 

   

   
 

   

   

 

   

       
 

The higher levels of SHM diagnostics – localisation, classification, severity 
assessment – are only accessible using supervised learning in the data-based approach 
(Farrar and Worden, 2012). In terms of damage detection the classification of a selected 
feature as abnormal or not is typified by two different approaches: supervised learning or 
unsupervised learning (novelty detection in this context). In terms of the SHM field, 
supervised learning means any procedure of classification of a feature which is trained 
with measurements representing and labelled by all conditions of interest (Dervilis et al., 
2014a). Unfortunately, one does not often have data from damaged structures; this forces 
a dependence on unsupervised learning i.e. novelty detection. This means that detection 
is sensitive to benign EOVs in or around the structure. The premise of novelty detection 
is to seek the answer to the question if given newly presented data from the structure, do 
they come from its undamaged state? This is a vital point, as the measured responses 
from a structure and the extracted features that are sensitive to damage are usually also 
sensitive to any change in EOVs. 

There is a need to find, visualise and remove such effects from feature data in order to 
prevent false alarms from diagnostic algorithms. Detecting EOVs is difficult because they 
manifest as multiple outliers – this requires robust methods of outlier/novelty detection. 
Unfortunately, this applies to both EOVs and data from a damaged system and a  
two-stage procedure is needed before monitoring: identify EOVs in training data and 
remove EOVs by subtraction or projection (Dervilis et al., 2014b, 2015). 

Different methods have been investigated in order to handle the influence of external 
variations such as principal component analysis, auto-associative neural networks or, 
more recently, cointegration (Cross, 2012; Cross et al., 2011). These algorithms present a 
number of advantages and disadvantages in terms of their ability to remove benign 
conditions; however, in terms of characterising which of the outliers are labelled as 
‘good’ in terms of detecting environmental/operational variations and which are ‘bad’ in 
terms of detecting structural degradation, very little effort has been carried out. 

As mentioned, the problem is that EOVs in training data will manifest as many 
outliers and will be hard to detect because of ‘masking’ effects where multiple outliers 
conspire to hide each other. Recently developed robust methods allow effective detection 
of multiple outliers. Furthermore, a combined approach of robust regression and robust 
multivariate statistics can be exploited as a means of characterising and distinguishing the 
influence of environmental and operational conditions on the structural response. It will 
be shown via the successful implementation of robust regression analysis that 
environmental and operational conditions can be made to manifest themselves differently 
compared to the damage condition (Dervilis et al., 2014b, 2015). 

This paper will discuss the performance of robust outlier and regression analysis for 
SHM purposes. The paper is not intended as a survey in any sense; it is simply an 
overview of recent work by the authors. The paper is justified here by the fact that the 
methods proposed should be considered as a coherent overview of a contribution to 
SHM. 

The layout of the paper is as follows. First it covers briefly the main features of some 
robust tools, by giving some examples. Next it discusses a simulated nonlinear system 
and the problems that arise, while at the same time giving a practical idea for a 
generalised linear regression model. The paper finishes with some overall conclusions. 
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2 Problem description 

Outlier detection methods have been used for various applications over many years and 
cover a broad range of fields of research such as econometrics, computer sciences, 
medical and biological sciences, meteorology and even political science. One of the 
standard references is Barnett and Lewis (1984). Some recent advances regarding robust 
outlier detection can be found in Dervilis et al. (2014b, 2015), Hubert and Debruyne 
(2010), Schyns et al. (2010), Attar et al. (2013), Rousseeuw and Hubert (2013), 
Nurunnabi et al. (2012), Verdonck et al. (accepted), Fritsch et al. (2011), and Variyath 
and Vattathoor (2013). 

There are several definitions as to what is an outlier. Hawkins (1980) and Barnett and 
Lewis (1984) give two general definitions. Barnett and Lewis indicate that “an outlying 
observation, or outlier, is one that appears to deviate markedly from other members of the 
sample in which it occurs”. Hawkins defines an outlier “as an observation that deviates so 
much from other observations as to arouse suspicion that it was generated by a different 
mechanism”. According to Hawkins (1980), mechanisms such as heavy-tailed 
distributions (like the t-distribution) or data that are coming from different kinds of 
distributions are often responsible for the contamination of data with outliers. 

The classic discordancy measure for indicating outliers, as used in many of the 
previous studies, is the Mahalanobis squared-distance (MSD), which is given by the 
following equation, 

{ } { }( ) { } { }( )2 1[Σ]
T

i x i xiD x μ x μ−= − −  (1) 

where {xi} is the potential outlier, {μx} is the mean of the sample observations and [Σ] is 
the sample covariance matrix. The MSD tells one how far away a specific measurement 
is from the centre of the training data cloud, relative to the size of the cloud (Dervilis  
et al., 2014b, 2015). The mean and covariance matrix could be inclusive or exclusive 
measures; that is to say that the statistics may or may not have been computed from data 
where outliers are already present (Dervilis et al., 2014b, 2015). Generally, in many 
different fields the training data are not known a priori to be uncontaminated and an 
inclusive approach is a necessity. However, in the context of SHM or condition 
monitoring this situation presents a series of drawbacks regarding the use of multivariate 
statistics. 

The main disadvantage of the classical distance measures (like the (MSD)) is that 
they can suffer from a multiple outlier ‘masking effect’ (Dervilis et al., 2014b, 2015). If 
there were groups of outliers already present in the training data, they would have a 
critical influence on the sample mean and covariance in such a way that they would 
subsequently indicate small distances on new observations or outlying data and thus 
cause the outliers to become hidden. The arithmetic mean and unbiased covariance 
matrix are statistics that suffer heavily from multiple outliers present in the data; they are 
not robust statistics. Specifically, when outliers from a cluster cloud that lie inside the 
data are present, they will directly move the arithmetic mean towards them and even 
expand the classical tolerance ellipsoid in their direction (Leroy and Rousseeuw, 1987). 

The application of robust computation to location and covariance estimation of 
multivariate data is clearly of significant interest in the investigation and detection of 
multiple inclusive outliers. For this reason, a method is discussed here – the minimum 
covariance determinant (MCD) estimator – which is much more robust against outliers in 
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the training data. This algorithm has already been used in an SHM context in Dervilis  
et al. (2014b, 2015). 

To make clear to the reader, the significant importance of the MCD against the MSD, 
in simple terms, is that the former allows one to search inclusively for multiple outliers 
by removing their ‘masking effect’ and revealing in multivariate data their infectious 
presence. A simple pictorial representation of this-supplementing the theory to follow – 
can be seen in Figures 1–2. The threshold calculation is described in Dervilis et al. 
(2014b, 2015). 

Figure 1 Multiple outlier detection using MSD; the masking effect (see online version  
for colours) 

 

Figure 2 Multiple outlier detection using MCD (see online version for colours) 

 

3 Robust estimators for distance measures 

This section will discuss the usage of robust outlier analysis for SHM purposes mainly 
through the use of the MCD estimator. Furthermore, it will discuss some alternative tools 
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like the minimum volume enclosing ellipsoid (MVEE) and the phase-space thresholding 
method. As discussed in the introduction, robust outlier statistics are focussed mainly on 
a high level estimation of the ‘masking effect’ of inclusive outliers, not only for 
determining the presence or absence of novelty but also to examine the normal condition 
training set for multiple abnormalities. 

3.1 Multiple outlier detection using the MCD estimator 

The computation of the MCD estimator requires an extensive calculation. The  
FAST-MCD algorithm is implemented here as it is computationally efficient (Leroy and 
Rousseeuw, 1987; Rousseeuw and Van Driessen, 1999; Verboven and Hubert, 2005; 
Hubert et al., 2008; Rousseeuw and Van Zomeren, 1990; Jackson and Chen, 2004).  
The algorithm is given in detail in Leroy and Rousseeuw (1987), Rousseeuw and  
Van Driessen (1999), Verboven and Hubert (2005), Hubert et al. (2008), Rousseeuw and 
Van Zomeren (1990), and Jackson and Chen (2004), and the code adopted here was 
provided via a statistical Matlab library called LIBRA (Verboven and Hubert, 2005). A 
brief description of the algorithm FAST-MCD is provided here for the sake of 
completeness of the current paper. 

A multivariate data matrix [X] = ({x1},…,{xm})T is assumed of m points in an  
n-dimensional observation space (n × m) where {xi} = (xi1,…,xin)T is the observation. 
Robust estimates of the centre μ and the scatter matrix σ of X can be calculated by the 
MCD estimator. The MCD tool looks for the 2( )mh >  observations out of m whose 
classical covariance matrix has the lowest possible determinant. The raw MCD estimate 
of location (arithmetic mean) is then computed from the average of these h points and the 
raw MCD estimation of scatter is the covariance matrix multiplied by a consistency 
factor (Dervilis et al., 2014b, 2015). 

The calculation of the lowest determinant is vital as one moves from one 
approximation of MCD to another one with lower determinant. This property and the 
proof that follows it are not obvious and can be found in the appendix of Rousseeuw and 
Van Driessen (1999). 

Based on the raw MCD estimates, a reweighting step can be added in order to 
increase the finite sampling efficiency. The advantage is that MCD estimates can resist 
up to (m – h) outliers and in turn, the number h (or equally )h

ma =  controls the 
robustness of the estimator. The highest resistance compared to contamination is 
achieved by calculating ( 1)

2 .n mh + +=  It is proposed that when a large proportion of 
contamination is assumed then h = an with a = 0.5. Detecting outliers can be challenging 
when m / n is small because some data points can become coplanar. This is a general 
problem in the machine learning community called the ‘curse of dimensionality’.  
It is recommended (Verboven and Hubert, 2005) that when 5,m

n >  a should be 0.5. 
Generally, the MCD estimates of location and scatter are affine equivariant which means 
that they are invariant under affine transformation behaviour (simultaneous rotation  
and translation). This is crucial as the underlying model is then immune to different 
variable scales and data rotations. Rousseeuw and Van Driessen (1999) developed the 
FAST-MCD algorithm based on a Concentration step (C-step). C-steps select the h 
observations with the smallest distances and the scatter matrix with the lowest 
determinant (Rousseeuw and Van Driessen, 1999) of the overall observations space. 
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3.2 An example: Piper Tomahawk aircraft wing experiment 

In the illustration given here, the experimental structure presented is an aluminium 
aircraft wing (Dervilis et al., 2014b, 2015). The wing is mounted in a cantilevered fashion 
on a substantial, sand-filled steel frame. Fifteen PCB piezoelectric accelerometers were 
mounted on the upper (as mounted) surface of the wing using ceramic cement. The 
sensors are denoted S1 to S15. Experimental data acquisition was performed using a 
DIFA SCADAS III system controlled by LMS software. All measurements were 
recorded within a frequency range of 0–2,048 Hz with a resolution of 0.5 Hz. The 
structure was excited with a band-limited white Gaussian signal using a Gearing and 
Watson amplifier and shaker mounted beneath the wing. 

Damage was introduced in a repeatable manner by modifying the inspection panels 
on the underside of the wing. Five panels were considered and all of them had the same 
dimensions and orientation (Figures 3–5). The test sequence was arranged into two 
rounds of five blocks resulting in ten blocks. Each block contains three runs: a normal 
condition run, a damage (saw-cut) run and a damage (panel-off) run. Each run contains 
100 observations. Within each block, only the panel of interest is removed or saw-cut 
panel replaced, the remaining four panels remain in place. In turn, at the end of the first 
run all five panels were removed and the second run started by repeating the procedure 
sequence again (Dervilis et al., 2014b, 2015). 

Figure 3 Piper Tomahawk aircraft wing 

 

Figure 4 Inspection panel in (a) normal condition, (b) removed panel and (c) saw cut 

     
(a)   (b)   (c) 
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Figure 5 Schematic sensor placement diagram 

 

The region around the resonance frequency between spectral points 780–820 was used as 
a feature (see Figure 6). It is obvious that several feature combinations can be tested, by 
combining the normal condition with each panel removal and each of the sensor 
measurements in order to check the sensitivity of damage detection regarding the position 
of the sensor (for more results see Dervilis et al., 2014b). 

Figure 6 Resonance frequency selected as a feature with 50 points around the peak (see online 
version for colours) 
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Source: Dervilis et al. (2014b, 2015) 

In the results that are shown in Figures 7–10 as an example the first 1,000 samples 
include the natural, undamaged condition of the structure of the ten blocks (ten blocks per 
diagram); the next 200 samples include either the panel removal (100 samples for each 
different run) or 200 samples include the panel saw cut damage (100 samples for each 
different run). 

It is clearly visible that the variation of normal condition is strong and if one 
compares the figures it is validated that the MSD is not suitable when inclusive outliers 
are present. Also, when damage measurements are included, the MSD index classifies 
almost all the observations as normal below the threshold but the MCD reveals the 
appearance of damage after sample point 1,000. 
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Figure 7 Novelty detection of normal condition of sensor 1 (see online version for colours) 
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Source: Dervilis et al. (2014b, 2015) 

Figure 8 Novelty detection of normal condition of sensor 5 (see online version for colours) 
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Source: Dervilis et al. (2014b, 2015) 

Figure 9 Novelty detection of sensor 14 in respect to panel 3, including panel removal  
(see online version for colours) 
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Source: Dervilis et al. (2014b, 2015) 

Figure 10 Novelty detection of sensor 15 in respect to panel 1, including panel removal  
(see online version for colours) 
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Source: Dervilis et al. (2014b, 2015) 
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3.3 Ellipse methods for outlier detection 

In the same spirit as the MCD, other methods of finding minimum ellipses can be utilised 
in terms of outliers detection. Khachiyan (1996), Khachiyan and Todd (1993), Kumar 
and Yildirim (2005), Moshtagh (2005) and Sun and Freund (2004) established a linear-
time reduction of the MVEE problem to the problem of computing a maximum volume 
inscribed ellipsoid (MVIE) in a polytope described by a finite number of inequalities 
(Dervilis et al., 2014b, 2015). Therefore, the MVEE problem can also be solved using  
the algorithms developed for the MVIE problem. Consider a set of m points in an  
n-dimensional space: S = {{x1}…{xm}} ∈ Rn. Denote the MVEE of the set S by 
MVEE(S). The ellipsoid should have positive volume and in centre form is given by 
Moshtagh (2005): 

( ) ( ){ }{ } | { } { } [ ] { } { } 1TnE x R x c A x c= ∈ − − ≤  (2) 

where {c} ∈ Rn is the centre of the ellipse E and [A] ∈ nS++  (which is the set of n × n 
positive definite matrices), describes the axes. The points {xi{ of the multivariate set S 
should each satisfy the constraint: 

{ }( ) { }( ){ } [ ] { } 1
T

i ix c A x c− − ≤  (3) 

The volume of E which will be minimised is given by Moshtagh (2005), 

( )
( ) 1/20 1

0( ) det [ ]
det [ ]

uvol E u A
A

−−= =  (4) 

where u0 is the volume of the unit hypersphere in dimension n. In summary, the problem 
of determining the ellipsoid of least volume containing the points of S is equivalent to 
finding a vector {c} ∈ Rn and an n × n positive definite symmetric matrix [A] which 
minimises det([A]–1) subject to the constraint (3). The natural formulation of the problem 
is: 

By varying [A], {c}, minimise det([A]–1) subject to the constraints: 

{ }( ) { }( ){ } [ ] { } 1 when 1, ,
T

i ix c A x c i m− − ≤ = …  (5) 

There are several different methods available in order to obtain a solution of the problem; 
the one used here is the dual formulation method based on Khachiyan’s algorithm 
(Dervilis et al., 2014b, 2015; Khachiyan, 1996; Kumar and Yildirim, 2005; Moshtagh, 
2005; Sun and Freund, 2004). The discordancy test is similar to that given for the 
equation of the MCD or MSD and calculates the squared distance from the centre of the 
ellipse to each data vector. 

In order to illustrate how the algorithm works, a data matrix of dimensions 3 × 1,000 
was constructed with each individual element a randomly generated vector from a normal 
distribution with zero mean and unit standard deviation and the MVEE was calculated. A 
tolerance parameter can be used to allow a proportion of points to escape the ellipse. This 
is determined in much the same way as the soft margin used in training a support vector 
machine (Moshtagh, 2005). The tolerance of the algorithm was set to 0.1 in Figure 11 and 
0.001 in Figure 12, in order to demonstrate the difference in covering all the extreme 
false positives values. 
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Figure 11 Error 0.1 in the solution of MVEE with respect to the optimal value (tolerance)  
(see online version for colours) 

 

Figure 12 Error 0.001 in the solution of MVEE with respect to the optimal value (tolerance)  
(see online version for colours) 

 

Another ellipsoid method that has recently been utilised in a condition monitoring 
application is the phase-space thresholding method (Donoho and Johnstone, 1994; 
Antoniadou and Worden, 2014). This method forms an ellipsoid in a three-dimensional 
phase space, without using the central statistics of the data; points lying outside the 
ellipsoid are designated as spikes or outliers (the three-dimensional phase space map or 
Poincare map is a simultaneous plot of a variable with its derivatives). As in standard 
outlier analysis, a threshold point is determined by indicating the ‘normal’ condition. The 
elliptical region fixed by the boundary threshold separates inliers from (multiple) outliers. 
The threshold used in this case is defined by a universal criterion. The universal threshold 
arises from a theoretical result in the landmark paper by Donoho and Johnstone (1994) 
and Antoniadou and Worden (2014). 
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In order to visualise the performance of the latter method, experimental gearbox 
vibration data from a wind turbine is displayed (Antoniadou and Worden, 2014; 
Antoniadou, 2013). The gearbox consists of three gear stages: one planetary gear stage 
and two spur gear stages. Before applying the phase-space thresholding tool, a  
time-frequency analysis is utilised, by implementing empirical mode decomposition 
(EMD) to the vibration data. The signals were decomposed into a set of signal 
components (oscillatory functions) in the time-domain called intrinsic mode functions 
(IMFs). In Figures 13–14, outlier detection using the phase-space threshold and the 
corresponding ellipsoid can be seen directly on the time series data formed from the 
instantaneous power of the second IMF. 

Figure 13 Constructed ellipsoid in 3D phase space for the power of the second IMF (see online 
version for colours) 

 

Source: Antoniadou and Worden (2014) and Antoniadou (2013) 

Figure 14 Outlier detection using the phase-space threshold method for the power of the second 
IMF (see online version for colours) 
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Source: Antoniadou and Worden (2014) and Antoniadou (2013) 

4 Regression estimators 

Many regression estimators break down in the presence of outliers. Generally, there are 
also different kinds of outliers from those previously considered in this paper. Via a 
robust regression methodology, one can uncover hidden patterns within collected 
databases (Dervilis et al., 2014b, 2015); this proves to be of great use for visualisation of 
SHM data. 
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Generally, in linear regression analysis the studied examples of data are of the type 
({xi}, {yi}) where {xi} is an m-dimensional input vector and the response {yi} is often a 
one-dimensional vector (Leroy and Rousseeuw, 1987; Rousseeuw and Van Zomeren, 
1990). Cases for which an {xi} is far away from the majority of the {xi} observations are 
called leverage points. 

If ({xi}, {yi}) is a leverage point then this indicates the ‘outlyingness’ of {xi}, but does 
not take into account the regression response {yi} (Dervilis et al., 2014b, 2015; 
Rousseeuw and Van Zomeren, 1990). A bad leverage point is one that does not respect 
the relationship between input and output corresponding to the majority of the data. Such 
a point can prove disastrous, as it attracts or shifts the classic least-squares regression 
parameter estimates (consequently the word ‘leverage’ is used). On the other hand, if 
({xi}, {yi})) follows the linear relation of the majority it can be called a good leverage 
point, because it will generally improve the performance of the regression model (see 
Figure 15). 

Figure 15 Regression example including: normal data (light green), vertical outliers (blue),  
good leverage points (dark green) and bad leverage points (red) (see online version  
for colours) 

 

To distinguish between leverage points and outliers, one must take into account the 
regression model and response {yi} in parallel with {xi} as the linear pattern of the 
multivariate space dictated by the majority of the observations will lead to the best result. 
This is the key reason that a high-breakdown (very robust) regression tool, such as the 
least trimmed squares (LTS) regression algorithm is critical (Dervilis et al., 2014b, 2015). 

The fast LTS estimator as proposed by Dervilis et al. (2014b, 2015), Rousseeuw and 
Hubert (2013), Leroy and Rousseeuw (1987), Rousseeuw and Van Driessen (1999), 
Hubert et al. (2008), Rousseeuw and Van Zomeren (1990), Rousseeuw and Van Driessen 
(2006), and Rousseeuw (1984) will be briefly described. Generally, in order to fit a linear 
regression model one assumes that: 

1 0 for 1i i i n iny θ x θ x θ i m= + + + =… …  (6) 

where θi are the regression coefficients and ({xi}, yi) are the data point coordinates. The 
basic objective of this algorithm is to minimise the function: 

( )2
:

1

for 1
h

i n
i

r i m
=

=∑ …  (7) 
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where r2 is the squared residual which is the difference between the observed values and 
the predicted value ˆ( ).y y−  The objective is to find in a similar fashion with the MCD 
estimator, h-subsets with the smallest least squares function (6). The LTS regression line 
is the least-squares model of these h-points. 

Dervilis et al. (2014b, 2015), Rousseeuw and Hubert (2013), Leroy and Rousseeuw 
(1987), Rousseeuw and Van Driessen (1999), Hubert et al. (2008), Rousseeuw and  
Van Zomeren (1990), Rousseeuw and Van Driessen (2006) and Rousseeuw (1984) state 
the major advantages of the algorithm against the classic least median squares robust 
regression (LMS), such as a smooth objective function, less sensitivity in the presence on 
local effects as well as statistical efficiency, as the LTS estimator is asymptotically 
normal. For more details on technical matters and implementation of these methods for 
SHM purposes, readers are referred to Dervilis et al. (2014b, 2015). 

4.1 Description of the results map 

The results that follow are presented in the form of a residual outlier map that can be used 
in order to classify the observations according to the robust regression model (see  
Figure 16). 

Figure 16 Residual outlier map (for better understanding see also Figure 15) (see online version 
for colours) 

 

Table 1 Residual outlier map description 

Region Classification Description 
One Vertical outlier Outside horizontal thresholds but within vertical threshold 
Two Bad leverage points Outside horizontal thresholds and outside vertical threshold 
Three Normal points Within horizontal thresholds and vertical threshold 
Four Horizontal outlier-

good leverage points 
Within horizontal thresholds but outside vertical threshold 

Five Vertical outlier Outside horizontal thresholds but within vertical threshold 
Six Bad leverage points Outside horizontal thresholds and outside vertical threshold 

Source: Dervilis et al. (2014b, 2015) 
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The plots are divided into six regions which are summarised in Table 1 (Dervilis et al., 
2014b, 2015; Leroy and Rousseeuw, 1987; Rousseeuw and Van Driessen, 1999; 
Verboven and Hubert, 2005; Hubert et al., 2008; Rousseeuw and Van Zomeren, 1990; 
Jackson and Chen, 2004). Interpretation of this map is better explained in terms of an 
SHM example; an illustration based on the SHM of civil infrastructure will be given. 

4.2 The Z24 bridge example 

The Z24 bridge was a concrete highway structure in Switzerland connecting Koppigen 
and Utzenstorf, and in the late 1990s, before its demolishment procedure, it was used for 
SHM purposes under the ‘SIMCES’ project (Cross, 2012; Roeck, 2003). During a whole 
year of monitoring of the bridge, a series of sensor systems captured modal parameter 
measurements, as well as a family of environmental measurements such as air 
temperature, soil temperature, humidity, wind speed etc. The critical point in this 
benchmark project was the introduction of different types of real progressive damage 
scenarios towards the end of the monitoring year. For the purposes of this study, the four 
natural frequencies that were extracted over a period of year, including the period of 
structural failure of the bridge are used (see Figure 17). 

Figure 17 Time history of frequencies (see online version for colours) 
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The Z24 bridge was extensively analysed using robust methods such as the LTS and 
MCD techniques as a means of exploring environmental variations for SHM purposes in 
a previous and ongoing work (Dervilis et al., 2014b, 2015). It was found that 
environmental variations due to sub-zero temperatures manifested themselves as vertical 
outliers (in comparison with damaged conditions which appears as horizontal outliers or 
bad leverage points). Vertical outliers present relatively small MCD distance index and 
large LTS residual values. 
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Figure 18 Plot of LTS residual versus MCD robust distance for regression between temperature 
and first natural frequency (linear LTS regression) (see online version for colours) 
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Source: Dervilis et al. (2014b, 2015) 

Figure 19 Plot of LTS residual versus MCD robust distance for regression between temperature 
and second natural frequency (linear LTS regression) (see online version for colours) 
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Source: Dervilis et al. (2014b, 2015) 

Figure 20 Plot of LTS residual versus MCD robust distance for regression between temperature 
and third natural frequency (linear LTS regression) (see online version for colours) 
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Source: Dervilis et al. (2014b, 2015) 
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Figure 21 Plot of LTS residual versus MCD robust distance for regression between temperature 
and fourth natural frequency (linear LTS regression) (see online version for colours) 
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Source: Dervilis et al. (2014b, 2015) 

As can be seen from in Figures 18–21, one can distinguish the different regions that were 
mentioned before. It can be noted the different characteristics between vertical 
outliers/region one (cold temperature influences), horizontal outliers (damage) and bad 
leverage points (damage). Environmental fluctuations due to temperature effects are 
different in nature than the damaged condition (region one or five) as they change the 
physical interpretation in the projection mapping. To make it even more clear, the 
fluctuation between observation 400–700 and between observations 1,200–1,500  
when the temperature reaches the coldest values appear in the LTS results as vertical 
outliers. This was vital information as it showed that the nature of outliers between 
operational/environmental variations and damage have totally different characteristics 
(see an example in Figures 18–21). Table 2 explains the different regions as they appear 
in the graphs. 
Table 2 Description of datasets as they appear in the figures 

Observation Condition 

1–400 Undamaged 

401–700 Undamaged (with some cold temperature variations) 

701–1,200 Undamaged (with some cold temperature variations) 

1,201–1,500 Very cold temperature 

1,501–3,475 Undamaged (with some hot temperature variations) 

3,476–3,932 Damaged 

The method presented so far has been for robust linear regression; however, as observed 
earlier, the Z24 data is actually nonlinear in the temperature. The first steps towards 
nonlinear robust regression for SHM are presented in the next section. 
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5 Investigation of a nonlinear manifold 

As a first step in investigating the performance of the LTS regression when a nonlinear 
system is present, simulated data were extracted via the following polynomial model with 
cubic terms: 

3
0( )f x x x x= + +  (8) 

where {x} is a vector of data points coming from a Gaussian distribution with zero mean 
and unit standard deviation. The output vector was corrupted with a Gaussian noise 
vector of r.m.s. value 0.01. 

Figure 22 Nonlinear simulated system (see online version for colours) 
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In Figure 22 can be seen the plot between input and output data. The training data points 
were chosen on purpose to be uniformly distributed between [–1, 1] in {x} where the 
function is fairly linear, with a small number of points added around +3 and –3. 

Figure 23 Plot of LTS residual versus MCD robust distance for regression between x and f(x)  
(see online version for colours) 
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Note: The vertical outlier points corresponds to the last two tail points of the polynomial. 
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As can be seen in Figure 23 the LTS algorithm for this clearly nonlinear relationship 
between input and output data wrongly classifies the edge points as bad leverage points, 
although they should be classified as good leverage points (as they belong to the normal 
condition of the polynomial function). As a result, the robust inclusive linear regression 
excludes the points at the edges and fits a good straight line to the centre dataset (see 
Figure 24). 

Figure 24 Plot of the actual regression output line of robust measures (see online version  
for colours) 
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It is clear that the issue here is that the linear robust regression is not able to cope with 
nonlinear relationships. In this example LTS fails to characterise the edge points of the 
cubic polynomial as good leverage points in the projection map as these points are a 
natural regression continuation of the training dataset and not bad leverage points. In the 
next session an attempt to carry on with a possible nonlinear generalised model will be 
presented and not a unified framework technique for nonlinear cases as this is still an 
ongoing work and new theory is developing regarding the definitions of leverage points 
and outliers of nonlinear regression for SHM purposes. 

6 Towards automatic nonlinear robust regression analysis 

As shown in the previous part, the necessity of a nonlinear robust regression analysis is 
important after the identification and characterisation of the different outliers/leverage 
points in different families. 

This analysis is possible if one changes the basis functions of the LTS algorithm by 
introducing a generalised linear model: 

( ) ( )1 1 0 for 1 and 1i i i n j iny θ u x θ u x θ i m j n= + + + = =… … …  (9) 

where θi are the regression coefficients, uj(x) are the new nonlinear basis functions and 
({xi}, yi) are the data point coordinates. The basic objective of the algorithm is again to 
find (in a similar fashion to the MCD estimator), h-subsets with the smallest least squares 
function (9). The LTS regression line is the least-square of error model of these h-points. 
It has to be clear that this is not a general method but an attempt to show how it would 
work on a specific case as the Z24 bridge. 
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7 A simple strategy for the Z24 bridge example 

In this study a simple strategy is followed in order to allow the LTS technique to account 
for the vertical outliers at low temperatures (below zero) for the Z24 data shown before 
and classify them as good leverage points. As in the Z24 bridge, the environmental 
variations on the natural frequency are mainly caused due to low temperature values, one 
could introduce the following model: 

( ) ( )1 1 2 2 0 for 1i i iy θ u T θ u T θ i m= + + = …  (10) 

where the basis functions work as bi-linear elements in the form of: 

( ) ( )

( ) ( )

1 2

2 1

for 0 and 0 for 0
and

for 0 and 0 for 0
for 1

i i i i i

i i i i i

u T T T u T T

u T T T u T T
i m

= ≥ = ≤

= ≤ = ≥
= …

 (11) 

where T is the deck temperature. (In the case of the nonlinear polynomial example that 
was shown in previous section one could change the basis functions in order to account 
for the cubic terms.) 

As can be seen from the results for three natural frequencies in Figures 25–28, the 
vertical outliers due to very low temperatures now appear as normal observations and the 
generalised bilinear LTS model performed very well in characterising the below zero 
measurements as normal/good leverage points. However, it can be noted that some few 
points that belong to very high temperatures (between observations 2,300–3,000) are not 
precisely classified as normal points which means that more basis functions in the 
generalised linear model might be needed in order to have a fully correct model that 
describes the Z24 bridge or it would be the case that some higher temperatures were 
included in the training data. Also, there is an indication of temporal increase of the mass 
of the bridge due to some trucks that were standing on the bridge during that period 
(Peeters and De Roeck, 2001). 

Figure 25 Plot of LTS residual versus MCD robust distance for regression between temperature 
and first natural frequency (nonlinear LTS regression) (see online version for colours) 
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Figure 26 Plot of LTS residual versus MCD robust distance for regression between temperature 
and second natural frequency (nonlinear LTS regression) (see online version  
for colours) 
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Figure 27 Plot of LTS residual versus MCD robust distance for regression between temperature 
and third natural frequency (nonlinear LTS regression) (see online version for colours) 
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Figure 28 Plot of LTS residual versus MCD robust distance for regression between temperature 
and fourth natural frequency (nonlinear LTS regression) (see online version for colours) 
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8 Conclusions 

In this paper, a review of robust outlier statistics for SHM applications is presented, 
focussed mainly on a high level estimation of the ‘masking effect’ of inclusive outliers, 
not only for determining the presence or absence of novelty – something that is of 
fundamental interest – but also to examine the normal condition set under the suspicion 
that it may already include multiple abnormalities due to EOVs (Dervilis et al., 2015). 

The approach as proposed in this paper provides a first attempt to move LTS robust 
regression to a nonlinear perspective using the ideas of generalised linear regression 
models. After it was pointed out in previous work (Dervilis et al., 2015) that EOVs can 
manifest themselves differently (vertical outliers) in physical appearance compared to 
damage measurements, an effort to classify these vertical outliers as normal operational 
points or good leverage points is proposed. 
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