117 research outputs found

    GALILEO-1: a Phase I/II safety and efficacy study of FLT201 gene therapy for Gaucher disease type 1

    Get PDF
    Gaucher disease type 1 (GD1), caused by mutations in the GBA1 gene, results in β-glucocerebrosidase (GCase) deficiency. Gene therapy is under investigation as a potential treatment option for patients with GD1. The investigational gene therapy FLT201 consists of an adeno-associated virus (AAVS3) encoding a novel GCase variant (GCase-85). Preclinical characterization of FLT201 showed promising results, with GCase-85 being more stable at physiological pH than wild-type GCase and delivered effectively to target tissues. Here, we describe the design of GALILEO-1, a first-in-human Phase I/II safety, tolerability and efficacy study of FLT201 gene therapy in adult patients with GD1. The study results will inform the decision to start a Phase III study of FLT201 in patients with GD1

    An expert consensus on the recommendations for the use of biomarkers in Fabry disease

    Get PDF
    Fabry disease is an X-linked lysosomal storage disorder caused by the accumulation of glycosphingolipids in various tissues and body fluids, leading to progressive organ damage and life-threatening complications. Phenotypic classification is based on disease progression and severity and can be used to predict outcomes. Patients with a classic Fabry phenotype have little to no residual α-Gal A activity and have widespread organ involvement, whereas patients with a later-onset phenotype have residual α-Gal A activity and disease progression can be limited to a single organ, often the heart. Diagnosis and monitoring of patients with Fabry disease should therefore be individualized, and biomarkers are available to support with this. Disease-specific biomarkers are useful in the diagnosis of Fabry disease; non-disease-specific biomarkers may be useful to assess organ damage. For most biomarkers it can be challenging to prove they translate to differences in the risk of clinical events associated with Fabry disease. Therefore, careful monitoring of treatment outcomes and collection of prospective data in patients are needed. As we deepen our understanding of Fabry disease, it is important to regularly re-evaluate and appraise published evidence relating to biomarkers. In this article, we present the results of a literature review of evidence published between February 2017 and July 2020 on the impact of disease-specific treatment on biomarkers and provide an expert consensus on clinical recommendations for the use of those biomarkers.publishedVersio

    Long-term outcomes with agalsidase alfa enzyme replacement therapy: Analysis using deconstructed composite events

    Get PDF
    This is a retrospective analysis of Fabry Outcome Survey data from children/adults (n = 677) receiving agalsidase alfa enzyme replacement therapy for a median of 3 years, examining cerebrovascular, cardiac, and renal morbidity endpoints separately. Cardiac events occurred at younger ages than cerebrovascular or renal events, cerebrovascular events were more frequent in females than males, and males were more likely to experience cardiac and renal events at a younger age than females

    A study on the safety and efficacy of reveglucosidase alfa in patients with late-onset Pompe disease.

    Get PDF
    BackgroundLate-onset Pompe disease is a rare genetic neuromuscular disorder caused by lysosomal acid alpha-glucosidase (GAA) deficiency that ultimately results in mobility loss and respiratory failure. Current enzyme replacement therapy with recombinant human (rh)GAA has demonstrated efficacy in subjects with late-onset Pompe disease. However, long-term effects of rhGAA on pulmonary function have not been observed, likely related to inefficient delivery of rhGAA to skeletal muscle lysosomes and associated deficits in the central nervous system. To address this limitation, reveglucosidase alfa, a novel insulin-like growth factor 2 (IGF2)-tagged GAA analogue with improved lysosomal uptake, was developed. This study evaluated the pharmacokinetics, safety, and exploratory efficacy of reveglucosidase alfa in 22 subjects with late-onset Pompe disease who were previously untreated with rhGAA.ResultsReveglucosidase alfa plasma concentrations increased linearly with dose, and the elimination half-life was <1.2 h. Eighteen of 22 subjects completed 72 weeks of treatment. The most common adverse events were hypoglycemia (63%), dizziness, fall, headache, and nausea (55% for each). Serious adverse events included hypersensitivity (n = 1), symptomatic hypoglycemia (n = 2), presyncope (n = 1), and acute cardiac failure (n = 1). In the dose-escalation study, all treated subjects tested positive for anti-reveglucosidase alfa, anti-rhGAA, anti-IGF1, and anti-IGF2 antibodies at least once. Subjects receiving 20 mg/kg of reveglucosidase alfa demonstrated increases in predicted maximum inspiratory pressure (13.9%), predicted maximum expiratory pressure (8.0%), forced vital capacity (-0.4%), maximum voluntary ventilation (7.4 L/min), and mean absolute walking distance (22.3 m on the 6-min walk test) at 72 weeks.ConclusionsAdditional studies are needed to further assess the safety and efficacy of this approach. Improvements in respiratory muscle strength, lung function, and walking endurance in subjects with LOPD may make up for the risk of hypersensitivity reactions and hypoglycemia. Reveglucosidase alfa may provide a new treatment option for patients with late-onset Pompe disease.Trial registrationISRCTN01435772 and ISRCTN01230801 , registered 27 October 2011

    Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients

    Get PDF
    Fabry disease (FD) results from mutations in the gene ( GLA ) that encodes the lysosomal enzyme α-galactosidase A (α-Gal A), and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb 3 ). Migalastat hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of α-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of some FD patients. A liquid chromatography-tandem mass spectrometry method was developed to measure lyso-Gb 3 in mouse tissues and human plasma. Oral administration of migalastat HCl to transgenic mice reduced elevated lyso-Gb 3 levels up to 64%, 59%, and 81% in kidney, heart, and skin, respectively, generally equal to or greater than observed for GL-3. Furthermore, baseline plasma lyso-Gb 3 levels were markedly elevated in six male FD patients enrolled in Phase 2 studies. Oral administration of migalastat HCl (150 mg QOD) reduced urine GL-3 and plasma lyso-Gb 3 in three subjects (range: 15% to 46% within 48 weeks of treatment). In contrast, three showed no reductions in either substrate. These results suggest that measurement of tissue and/or plasma lyso-Gb 3 is feasible and may be warranted in future studies of migalastat HCl or other new potential therapies for FD

    Prevalence of CADASIL and Fabry Disease in a Cohort of MRI Defined Younger Onset Lacunar Stroke.

    Get PDF
    BACKGROUND AND PURPOSE: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), caused by mutations in the NOTCH3 gene, is the most common monogenic disorder causing lacunar stroke and cerebral small vessel disease (SVD). Fabry disease (FD) due to mutations in the GLA gene has been suggested as an underdiagnosed cause of stroke, and one feature is SVD. Previous studies reported varying prevalence of CADASIL and FD in stroke, likely due to varying subtypes studied; no studies have looked at a large cohort of younger onset SVD. We determined the prevalence in a well-defined, MRI-verified cohort of apparently sporadic patients with lacunar infarct. METHODS: Caucasian patients with lacunar infarction, aged ≤70 years (mean age 56.7 (SD8.6)), were recruited from 72 specialist stroke centres throughout the UK as part of the Young Lacunar Stroke DNA Resource. Patients with a previously confirmed monogenic cause of stroke were excluded. All MRI's and clinical histories were reviewed centrally. Screening was performed for NOTCH3 and GLA mutations. RESULTS: Of 994 subjects five had pathogenic NOTCH3 mutations (R169C, R207C, R587C, C1222G and C323S) all resulting in loss or gain of a cysteine in the NOTCH3 protein. All five patients had confluent leukoaraiosis (Fazekas grade ≥2). CADASIL prevalence overall was 0.5% (95% CI 0.2%-1.1%) and among cases with confluent leukoaraiosis 1.5% (95% CI 0.6%-3.3%). No classic pathogenic FD mutations were found; one patient had a missense mutation (R118C), associated with late-onset FD. CONCLUSION: CADASIL cases are rare and only detected in SVD patients with confluent leukoaraiosis. No definite FD cases were detected.The UK Young Lacunar Stroke DNA Study was funded by a grants from the Wellcome Trust (WT072952, www.wellcome.ac.uk) and the Stroke Association (TSA 2010/01& TSA 2013/02, www.stroke.org.uk). Fabry disease screening was supported by an unrestricted scientific grant from Shire Human Genetic Therapies (www.shire.com). The sponsors of the study had no role in the study design, data collection, data analysis, interpretation, writing of the manuscript, or the decision to submit the manuscript for publication. L R-J’s salary is funded by a Stroke Association/ British Heart Foundation grant. (TSA/BHF 2010/01). HM is supported by an National Institute for Health Research Senior Investigator award (www.nihr.ac.uk). HM and SB are supported by the Cambridge University Trust National Institute for Health Research Comprehensive Research Centre (www.cambridge-brc.org.uk).This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.013635

    Clinical utilisation of implantable loop recorders in adults with Fabry disease-a multi-centre snapshot study

    Get PDF
    Fabry disease (FD) is an X-linked deficiency of alpha-galactosidase-A, leading to lysosomal storage of sphingolipids in multiple organs. Myocardial accumulation contributes to arrhythmia and sudden death, the most common cause of FD mortality. Therefore, there is a need for risk stratification and prediction to target device therapy. Implantable loop recorders (ILRs) allow for continual rhythm monitoring for up to 3 years. Here, we performed a retrospective study to evaluate current ILR utilisation in FD and quantify the burden of arrhythmia that was detected, which resulted in a modification of therapy. This was a snapshot assessment of 915 patients with FD across three specialist centres in England during the period between 1 January 2000 and 1 September 2022. In total, 22 (2.4%) patients underwent clinically indicated ILR implantation. The mean implantation age was 50 years and 13 (59%) patients were female. Following implantation, nine (41%) patients underwent arrhythmia detection, requiring intervention (six on ILR and three post-ILR battery depletion). Three patients experienced sustained atrial high-rate episodes and were started on anticoagulation. Three had non-sustained tachyarrhythmia and were started on beta blockers. Post-ILR battery depletion, one suffered complete heart block and two had sustained ventricular tachycardia, all requiring device therapy. Those with arrhythmia had a shorter PR interval on electrocardiography. This study demonstrates that ILR implantation in FD uncovers a high burden of arrhythmia. ILRs are likely to be underutilised in this pro-arrhythmic cohort, perhaps restricted to those with advanced FD cardiomyopathy. Following battery depletion in three patients as mentioned above, greater vigilance and arrhythmia surveillance are advised for those experiencing major arrhythmic events post-ILR monitoring. Further work is required to establish who would benefit most from implantation.</p

    Systematic review of the incidence and clinical risk predictors of atrial fibrillation and permanent pacemaker implantation for bradycardia in Fabry disease

    Get PDF
    Introduction Fabry disease (FD) is an X-linked lysosomal storage disorder caused by enzyme deficiency, leading to glycosphingolipid accumulation. Cardiac accumulation triggers local tissue injury, electrical instability and arrhythmia. Bradyarrhythmia and atrial fibrillation (AF) incidence are reported in up to 16% and 13%, respectively.Objective We conducted a systematic review evaluating AF burden and bradycardia requiring permanent pacemaker (PPM) implantation and report any predictive risk factors identified.Methods We conducted a literature search on studies in adults with FD published from inception to July 2019. Study outcomes included AF or bradycardia requiring therapy. Databases included Embase, Medline, PubMed, Web of Science, CINAHL and Cochrane. The Risk of Bias Agreement tool for Non-Randomised Studies (RoBANS) was utilised to assess bias across key areas.Results 11 studies were included, eight providing data on AF incidence or PPM implantation. Weighted estimate of event rates for AF were 12.2% and 10% for PPM. Age was associated with AF (OR 1.05–1.20 per 1-year increase in age) and a risk factor for PPM implantation (composite OR 1.03). Left ventricular hypertrophy (LVH) was associated with AF and PPM implantation.Conclusion Evidence supporting AF and bradycardia requiring pacemaker implantation is limited to single-centre studies. Incidence is variable and choice of diagnostic modality plays a role in detection rate. Predictors for AF (age, LVH and atrial dilatation) and PPM (age, LVH and PR/QRS interval) were identified but strength of association was low. Incidence of AF and PPM implantation in FD are variably reported with arrhythmia burden likely much higher than previously thought.PROSPERO database CRD42019132045

    A randomised controlled trial evaluating arrhythmia burden, risk of sudden cardiac death and stroke in patients with Fabry disease:The role of implantable loop recorders (RaILRoAD) compared with current standard practice

    Get PDF
    Background: Fabry disease (FD) is a genetic disorder caused by a deficiency in the enzyme alpha-galactosidase A, leading to an accumulation of glycosphingolipids in tissues across the body. Cardiac disease is the leading cause of morbidity and mortality. Advanced disease, characterised by extensive left ventricular hypertrophy, ventricular dysfunction and fibrosis, is known to be associated with an increase in arrhythmia. Data identifying risk factors for arrhythmia are limited, and no Fabry-specific risk stratification tool is available to select those who may benefit from initiation of medical or device therapy (implantable cardiac defibrillators). Current monitoring strategies have a limited diagnostic yield, and implantable loop recorders (ILRs) have the potential to change treatment and clinical outcomes. Aim: The aim of this study is to determine whether ILRs can (1) improve arrhythmia detection in FD and (2) identify risk predictors of arrhythmia. Methods: A prospective, 5-year, open-label, international, multi-centre randomised controlled trial of a minimum of 164 participants with genetically or enzymatically confirmed FD (or both) who have evidence of cardiac disease will be recruited from five centres: Queen Elizabeth Hospital, Birmingham, UK; Salford Royal Hospital, Salford, UK; Royal Free Hospital, London, UK; Addenbrookes Hospital, Cambridge, UK; and Westmead Hospital, Sydney, Australia. Participants will be block-randomised (1:1) to two study arms for cardiac monitoring (i) control arm: standard of care with annual 24 h or 5-day Holter monitor or (ii) treatment arm: continuous cardiac monitoring with ILR implantation plus standard of care. Participants will undergo multiple investigations - blood/urine biomarkers, 12-lead and advanced electrocardiogram (ECG) recording, echocardiography and cardiovascular magnetic resonance (CMR) imaging - at baseline and 6-12 monthly follow-up visits. The primary endpoint is identification of arrhythmia requiring initiation or alteration in therapy. Secondary outcome measures include characterising the risk factors associated with arrhythmia and outcome data in the form of imaging, ECG and blood biomarkers. Discussion: This is the first study evaluating arrhythmia burden and the use of ILR across the spectrum of risk profiles in Fabry cardiomyopathy. This will enable detailed characterisation of arrhythmic risk predictors in FD and ultimately support formulation of Fabry-specific guidance in this high-risk population. Trial registration: ClinicalTrials.gov (NCT03305250). Registered on 9 October 2017

    Study of indications for cardiac device implantation and utilisation in Fabry cardiomyopathy

    Get PDF
    Background: Fabry disease is a treatable X-linked condition leading to progressive cardiomyopathy, arrhythmia and premature death. Atrial and ventricular arrhythmias contribute significantly to adverse prognosis; however, guidance to determine which patients require cardiovascular implantable electronic devices (CIEDs) is sparse. We aimed to evaluate indications for implantation practice in the UK and quantify device utilisation. Methods: In this retrospective study, we included demographic, clinical and imaging data from patients in four of the largest UK Fabry centres. Ninety patients with Fabry disease were identified with CIEDs implanted between June 2001 and February 2018 (FD-CIED group). To investigate differences in clinical and imaging markers between those with and without devices, these patients were compared with 276 patients without a CIED (FD-control). Results: In the FD-CIED group, 92% of patients with permanent pacemakers but only 28% with implantable cardioverter-defibrillators had a class 1 indication for implantation. A further 44% of patients had defibrillators inserted for primary prevention outside of current guidance. The burden of arrhythmia requiring treatment in the FD-CIED group was high (asymptomatic atrial fibrillation: 29%; non-sustained ventricular tachycardia requiring medical therapy alone: 26%; sustained ventricular tachycardia needing anti-tachycardia pacing/defibrillation: 28%). Those with devices were older, had greater LV mass, more scar tissue and larger atrial size. Conclusions: Arrhythmias are common in Fabry patients. Those with cardiac devices had high rates of atrial fibrillation requiring anticoagulation and ventricular arrhythmia needing device treatment. These are as high as those in hypertrophic cardiomyopathy, supporting the need for Fabry-specific indications for device implantation
    corecore