2,522 research outputs found
Boundary triplets for skew-symmetric operators and the generation of strongly continuous semigroups
We give a self-contained and streamlined exposition of a generation theorem
for C0-semigroups based on the method of boundary triplets. We apply this
theorem to port-Hamiltonian systems where we discuss recent results appearing
in stability and control theory. We give detailed proofs and require only a
basic knowledge of operator and semigroup theory.Comment: 19 page
Π‘ΠΈΠ½ΡΠ΅Π· Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΈΡ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ 5-R,Rβ-Π°ΠΌΡΠ½ΠΎΠΌΠ΅ΡΠΈΠ»Π΅Π½ΠΏΠΎΡ ΡΠ΄Π½ΠΈΡ ΡΡΠ°Π·ΠΎΠ»ΡΠ΄ΠΈΠ½- 2,4-Π΄ΡΠΎΠ½Ρ ΡΠ° 4-ΡΡΠΎΠΊΡΠΎΡΡΠ°Π·ΠΎΠ»ΡΠ΄ΠΈΠ½-2-ΠΎΠ½Ρ
The study is devoted to the rational search of modern potential antimicrobial agents among of 4-thiazolidine(thi)ones. 5-R,Rβ-Enamin(thi)ones of thiazolidinone series have been tested for design and the initial screening of the antibacterial properties. The use of 5-ethoxymetylene derivatives of thiazolidine-2,4-dione and 4-thioxothiazolidin-2-one as effective βbuilding blocksβ for the synthesis of small libraries of bioactive compounds has been proposed. Nucleophilic substitution reactions between 5-ethoxymetylene derivatives and amino alcohols, the primary and secondary functionalized aromatic and heteroaromatic amines, heterocyclic amines (piperidine and substituted pyrazolines) have been studied. The pharmacological screening of the antimicrobial activity for the enamin(thi)ones synthesized on clinical isolates of staphylococci with different resistance mechanisms to protected Ξ²-lactams and multiresistance strains of E. coli and Ps. Aeruginosa has been performed. Compounds with a distinct antimicrobial effect have been identified. They can also increase the sensitivity of S. aureus and S. haemolyticus clinical strains to oxacillin, and can be used to create new combined antimicrobial chemotherapeutic agents. The βstructure β antimicrobial activityβ relationships for design and search for new antimicrobial agents have been analysed.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠ²ΡΡΠ΅Π½ΠΎ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌΡ ΠΏΠΎΠΈΡΠΊΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ
Π°Π³Π΅Π½ΡΠΎΠ² ΡΡΠ΅Π΄ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
4-ΡΠΈΠ°Π·ΠΎΠ»ΠΈΠ΄ΠΈΠ½(ΡΠΈ)ΠΎΠ½ΠΎΠ². ΠΠ»Ρ Π΄ΠΈΠ·Π°ΠΉΠ½Π° ΠΈ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΈΠ½ΠΈΠ½Π³Π° Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°Π½Ρ 5-R,Rβ-Π΅Π½Π°ΠΌΠΈΠ½(ΡΠΈ)ΠΎΠ½Ρ ΡΠΈΠ°Π·ΠΎΠ»ΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ΄Π°. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ 5-ΡΡΠΎΠΊΡΠΈΠΌΠ΅ΡΠΈΠ»Π΅Π½ΡΠΈΠ°Π·ΠΎΠ»ΠΈΠ΄ΠΈΠ½-2,4-Π΄ΠΈΠΎΠ½Π° ΠΈ 4-ΡΠΈΠΎΠΊΡΠΎΡΠΈΠ°Π·ΠΎΠ»ΠΈΠ΄ΠΈΠ½-2-ΠΎΠ½Π° ΠΊΠ°ΠΊ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
Β«ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
Π±Π»ΠΎΠΊΠΎΠ²Β» Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΌΠ°Π»ΡΡ
Π±ΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ. ΠΠ·ΡΡΠ΅Π½Ρ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ 5-ΡΡΠΎΠΊΡΠΈΠΌΠ΅ΡΠΈΠ»Π΅Π½ΡΠΈΠ°Π·ΠΎΠ»ΠΈΠ΄ΠΈΠ½ΠΎΠ² Ρ Π°ΠΌΠΈΠ½ΠΎΡΠΏΠΈΡΡΠ°ΠΌΠΈ, ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΠΌΠΈ ΠΈ Π²ΡΠΎΡΠΈΡΠ½ΡΠΌΠΈ Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ Π³Π΅ΡΠ΅ΡΠΎΠ°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π°ΠΌΠΈΠ½Π°ΠΌΠΈ, Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π°ΠΌΠΈΠ½Π°ΠΌΠΈ (ΠΏΠΈΠΏΠ΅ΡΠΈΠ΄ΠΈΠ½ ΠΈ Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΠΏΠΈΡΠ°Π·ΠΎΠ»ΠΈΠ½Ρ). ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΊΡΠΈΠ½ΠΈΠ½Π³ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π΅Π½Π°ΠΌΠΈΠ½ΠΎΠ² Π½Π° ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ·ΠΎΠ»ΡΡΠ°Ρ
ΡΡΠ°ΡΠΈΠ»ΠΎΠΊΠΎΠΊΠΊΠΎΠ² Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΊ Π·Π°ΡΠΈΡΠ΅Π½Π½ΡΠΌ Ξ²-Π»Π°ΠΊΡΠ°ΠΌΠ°ΠΌ ΠΈ ΠΏΠΎΠ»ΠΈΠ°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠΎΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΡΡ
ΡΡΠ°ΠΌΠΌΠ°Ρ
E. coli ΠΈ Ps. Aeruginosa. ΠΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Ρ Π²ΡΡΠ°Π·ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΡΠΌ ΡΡΡΠ΅ΠΊΡΠΎΠΌ, ΡΠΏΠΎΡΠΎΠ±Π½ΡΠ΅ ΠΏΠΎΠ²ΡΡΠ°ΡΡ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ°ΠΌΠΌΠΎΠ² S. Aureus ΠΈ S. haemolyticus ΠΊ ΠΎΠΊΡΠ°ΡΠΈΠ»Π»ΠΈΠ½Ρ, ΡΡΠΎ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΎ ΠΏΡΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΠΈ Π½ΠΎΠ²ΡΡ
ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ
Ρ
ΠΈΠΌΠΈΠΎΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ΅Π΄ΡΡΠ². ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠ²ΡΠ·Π΅ΠΉ Β«ΡΡΡΡΠΊΡΡΡΠ° β ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅Β» Π΄Π»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π΄ΠΈΠ·Π°ΠΉΠ½Π° ΠΈ ΠΏΠΎΠΈΡΠΊΠ° Π½ΠΎΠ²ΡΡ
ΠΏΡΠΎΡΠΈΠ²ΠΎΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ
Π°Π³Π΅Π½ΡΠΎΠ².ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΏΡΠΈΡΠ²ΡΡΠ΅Π½Π΅ ΡΠ°ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌΡ ΠΏΠΎΡΡΠΊΡ ΡΡΡΠ°ΡΠ½ΠΈΡ
ΠΏΠΎΡΠ΅Π½ΡΡΠΉΠ½ΠΈΡ
Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΈΡ
Π°Π³Π΅Π½ΡΡΠ² ΡΠ΅ΡΠ΅Π΄ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
4-ΡΡΠ°Π·ΠΎΠ»ΡΠ΄ΠΈΠ½(ΡΡ)ΠΎΠ½ΡΠ². ΠΠ΄ΡΠΉΡΠ½Π΅Π½ΠΎ ΡΠΏΡΠΎΠ±Ρ Π΄ΠΈΠ·Π°ΠΉΠ½Ρ ΡΠ° ΠΏΠ΅ΡΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ΡΠΊΡΠΈΠ½ΡΠ½Π³Ρ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΡΠ°Π»ΡΠ½ΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ 5-R,Rβ-ΡΠ½Π°ΠΌΡΠ½(ΡΡ)ΠΎΠ½ΡΠ² ΡΡΠ°Π·ΠΎΠ»ΡΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ΄Ρ. ΠΠ°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ 5-Π΅ΡΠΎΠΊΡΠΈΠΌΠ΅ΡΠΈΠ»Π΅Π½ΡΡΠ°Π·ΠΎΠ»ΡΠ΄ΠΈΠ½-2,4-Π΄ΡΠΎΠ½Ρ ΡΠ° 4-ΡΡΠΎΠΊΡΠΎΡΡΠ°Π·ΠΎΠ»ΡΠ΄ΠΈΠ½-2-ΠΎΠ½Ρ ΡΠΊ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΡ
Β«ΡΡΡΡΠΊΡΡΡΠ½ΠΈΡ
Π±Π»ΠΎΠΊΡΠ²Β» Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΌΠ°Π»ΠΈΡ
Π±ΡΠ±Π»ΡΠΎΡΠ΅ΠΊ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ. ΠΠΈΠ²ΡΠ΅Π½Ρ ΡΠ΅Π°ΠΊΡΡΡ Π½ΡΠΊΠ»Π΅ΠΎΡΡΠ»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΠΌΡΡΠ΅Π½Π½Ρ 5-Π΅ΡΠΎΠΊΡΠΈΠΌΠ΅ΡΠΈΠ»Π΅Π½ΡΡΠ°Π·ΠΎΠ»ΡΠ΄ΠΈΠ½ΠΎΠ½ΡΠ² Π· Π°ΠΌΡΠ½ΠΎΡΠΏΠΈΡΡΠ°ΠΌΠΈ, ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ ΠΏΠ΅ΡΠ²ΠΈΠ½Π½ΠΈΠΌΠΈ Ρ Π²ΡΠΎΡΠΈΠ½Π½ΠΈΠΌΠΈ Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ½ΠΈΠΌΠΈ ΡΠ° Π³Π΅ΡΠ΅ΡΠΎΠ°ΡΠΎΠΌΠ°ΡΠΈΡΠ½ΠΈΠΌΠΈ Π°ΠΌΡΠ½Π°ΠΌΠΈ, Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΠΌΠΈ Π°ΠΌΡΠ½Π°ΠΌΠΈ (ΠΏΡΠΏΠ΅ΡΠΈΠ΄ΠΈΠ½ ΡΠ° Π·Π°ΠΌΡΡΠ΅Π½Ρ ΠΏΡΡΠ°Π·ΠΎΠ»ΡΠ½ΠΈ). ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΉ ΡΠΊΡΠΈΠ½ΡΠ½Π³ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½ΠΈΡ
ΡΠ½Π°ΠΌΡΠ½ΡΠ² ΡΠΎΠ΄ΠΎ ΠΊΠ»ΡΠ½ΡΡΠ½ΠΈΡ
ΡΠ·ΠΎΠ»ΡΡΡΠ² ΡΡΠ°ΡΡΠ»ΠΎΠΊΠΎΠΊΡΠ² Π· ΡΡΠ·Π½ΠΈΠΌΠΈ ΠΌΠ΅Ρ
Π°Π½ΡΠ·ΠΌΠ°ΠΌΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΡ Π΄ΠΎ Π·Π°Ρ
ΠΈΡΠ΅Π½ΠΈΡ
Ξ²-Π»Π°ΠΊΡΠ°ΠΌΡΠ² ΡΠ° ΠΏΠΎΠ»ΡΠ°Π½ΡΠΈΠ±ΡΠΎΡΠΈΠΊΠΎΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΈΡ
ΡΡΠ°ΠΌΡΠ² E. coli Ρ Ps. Aeruginosa. ΠΠ΄Π΅Π½ΡΠΈΡΡΠΊΠΎΠ²Π°Π½Ρ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π· Π²ΠΈΡΠ°Π·Π½ΠΈΠΌ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΈΠΌ Π΅ΡΠ΅ΠΊΡΠΎΠΌ, Π·Π΄Π°ΡΠ½Ρ ΠΏΡΠ΄Π²ΠΈΡΡΠ²Π°ΡΠΈ ΡΡΡΠ»ΠΈΠ²ΡΡΡΡ ΠΊΠ»ΡΠ½ΡΡΠ½ΠΈΡ
ΡΡΠ°ΠΌΡΠ² S. aureus Ρ S. Haemolyticus Π΄ΠΎ ΠΎΠΊΡΠ°ΡΠΈΠ»ΡΠ½Ρ, ΡΠΎ ΠΌΠΎΠΆΠ΅ Π±ΡΡΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½ΠΎ ΠΏΡΠΈ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π½ΠΎΠ²ΠΈΡ
ΠΊΠΎΠΌΠ±ΡΠ½ΠΎΠ²Π°Π½ΠΈΡ
Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΈΡ
Ρ
ΡΠΌΡΠΎΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ½ΠΈΡ
Π·Π°ΡΠΎΠ±ΡΠ². ΠΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΎ Π·Π°Π»Π΅ΠΆΠ½ΡΡΡΡ Π·Π²βΡΠ·ΠΊΡΠ² Β«ΡΡΡΡΠΊΡΡΡΠ° β Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Π° Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡΒ» Π΄Π»Ρ ΡΠΏΡΡΠΌΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π΄ΠΈΠ·Π°ΠΉΠ½Ρ ΡΠ° ΠΏΠΎΡΡΠΊΡ Π½ΠΎΠ²ΠΈΡ
Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΡΠ°Π»ΡΠ½ΠΈΡ
Ρ ΠΏΡΠΎΡΠΈΠ³ΡΠΈΠ±ΠΊΠΎΠ²ΠΈΡ
Π°Π³Π΅Π½ΡΡΠ²
UNIQUE FEATURES OF METABOLIC DISORDERS OF CONNECTIVE TISSUE IN POSTOPERATIVE ABDOMINAL HERNIA AND ITS POSSIBLE RESOLUTION
Objective: study and analyse features of metabolic disorders of connective tissue in postoperative abdominal hernia and its possible resolution.Materials and methods: 68 patients with postoperative ventral hernias of different age groups were studied and screening of undifferentiated connective-tissue syndromes (UCTS) was carried out, to study its metabolic markers.Results: it has been proved that with aging, there is an increase binded hydroxyproline, indicating increased fibrillogenesis. In patients in age group of 51-60 years, there was an increase in the free hydroxyproline, confirming the predominance of collagen breakdown over its synthesis. With increase in severity of UCTS, there was an increase in the level of free hydroxyproline, indicating a more pronounced decay of collagen. At the same time, faster recovery was noticed in collagen metabolism in the postoperative period in groups of patients with mild and moderate UCTS severity.Conclusions: collagen breakdown is more pronounced in patients with severe UCTS and its recovery in the postoperative period is directly related to the severity of UCTS that requires pharmacological resolution
Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates
Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion
Spectra of self-adjoint extensions and applications to solvable Schroedinger operators
We give a self-contained presentation of the theory of self-adjoint
extensions using the technique of boundary triples. A description of the
spectra of self-adjoint extensions in terms of the corresponding Krein maps
(Weyl functions) is given. Applications include quantum graphs, point
interactions, hybrid spaces, singular perturbations.Comment: 81 pages, new references added, subsection 1.3 extended, typos
correcte
Restrictions and extensions of semibounded operators
We study restriction and extension theory for semibounded Hermitian operators
in the Hardy space of analytic functions on the disk D. Starting with the
operator zd/dz, we show that, for every choice of a closed subset F in T=bd(D)
of measure zero, there is a densely defined Hermitian restriction of zd/dz
corresponding to boundary functions vanishing on F. For every such restriction
operator, we classify all its selfadjoint extension, and for each we present a
complete spectral picture.
We prove that different sets F with the same cardinality can lead to quite
different boundary-value problems, inequivalent selfadjoint extension
operators, and quite different spectral configurations. As a tool in our
analysis, we prove that the von Neumann deficiency spaces, for a fixed set F,
have a natural presentation as reproducing kernel Hilbert spaces, with a
Hurwitz zeta-function, restricted to FxF, as reproducing kernel.Comment: 63 pages, 11 figure
ΠΠΎΡΠ΅ΠΊΡΡΡ Π΄ΠΎΠΊΡΠΎΡΡΠ±ΡΡΠΈΠ½ΡΠ½Π΄ΡΠΊΠΎΠ²Π°Π½ΠΎΡ Π³Π΅ΠΏΠ°ΡΠΎΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΡ ΠΏΠΎΡ ΡΠ΄Π½ΠΈΠΌΠΈ Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ ΡΠ° ΡΡ ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΡΠΌΠΈ Π· ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Π² Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡ Π½Π° ΡΡΡΠ°Ρ
The article presents the results of the pharmacological study of glucosamine derivatives and their combinations with flavonoid quercetin as correctors of hepatotoxicity of anthracycline antibiotics, particularly doxorubicin. As the test compounds substances of glucosamine hydrochloride in conventionally therapeutic doses of 50 mg/kg, and the combination of aminosugars of glucosamine hydrochloride and N-acetylglucosamine with flavonoid quercetin in the ratio of 3:1 equivalent to glucosamine hydrochloride in a conventionally therapeutic dose of 82 mg/kg have been studied. Quercetin was used in the dose of 20.5 mg/kg as a reference medicine. To assess the degree of liver damage and severity of the hepatoprotective activity of the objects selected a number of biochemical parameters (the level of TBA-reactants of the serum and the liver homogenate, the activity of indicator enzymes of ALT, AST cytolysis, the content of the total protein, glucose, urea in the serum) have been determined; the the histomorphologic study of liver tissue has been conducted. According to the experimental results it has been found that all tested compounds have the ability to reduce the toxic effects of doxorubicin in relation to the liver. With respect to overall rating of the parameters studied a combination of aminosugars of glucosamine hydrochloride and N-acetylglucosamine with quercetin has shown the most significant hepatoprotective effect, and it can be explained by a synergistic action of its individual components directed to inhibition of free radical processes and cytolysis, inhibition of inflammation, urea formation function, protein synthesis in the liver, normalization of the carbohydrate metabolism and decrease of hypoplastic changes in the liver tissue. The results of the study experimentally substantiate the use perspectiveness of a combination of aminosugars of glucosamine hydrochloride and N-acetylglucosamine with quercetin for pharmacological correction of toxic effects of anthracycline antibiotics during anticancer therapy.ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° ΠΈ ΠΈΡ
ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΉ Ρ ΡΠ»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄ΠΎΠΌ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠΎΡΡΠ΅ΠΊΡΠΎΡΠΎΠ² Π³Π΅ΠΏΠ°ΡΠΎΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΠΈ Π°Π½ΡΡΠ°ΡΠΈΠΊΠ»ΠΈΠ½ΠΎΠ²ΡΡ
Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠΎΠ², Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π΄ΠΎΠΊΡΠΎΡΡΠ±ΠΈΡΠΈΠ½Π°. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΈΠ·ΡΡΠ°Π»ΠΈΡΡ ΡΡΠ±ΡΡΠ°Π½ΡΠΈΠΈ Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Π³ΠΈΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π° Π² ΡΡΠ»ΠΎΠ²Π½ΠΎ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠ·Π΅ 50 ΠΌΠ³/ΠΊΠ³ ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡ Π°ΠΌΠΈΠ½ΠΎΡΠ°Ρ
Π°ΡΠΎΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Π³ΠΈΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π° ΠΈ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Ρ ΡΠ»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄ΠΎΠΌ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Π² ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ 3:1 Π² ΠΏΠ΅ΡΠ΅ΡΡΠ΅ΡΠ΅ Π½Π° Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Π³ΠΈΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄ Π² ΡΡΠ»ΠΎΠ²Π½ΠΎ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠ·Π΅ 82 ΠΌΠ³/ΠΊΠ³. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ Π² Π΄ΠΎΠ·Π΅ 20,5 ΠΌΠ³/ΠΊΠ³. ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ Π³Π΅ΠΏΠ°ΡΠΎΡΡΠΎΠΏΠ½ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²ΡΠ±ΡΠ°Π½Π½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΡΡΠ΄ Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ (ΡΡΠΎΠ²Π΅Π½Ρ Π’ΠΠ-ΡΠ΅Π°ΠΊΡΠ°Π½ΡΠΎΠ² ΡΡΠ²ΠΎΡΠΎΡΠΊΠΈ ΠΊΡΠΎΠ²ΠΈ ΠΈ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°ΡΠ° ΠΏΠ΅ΡΠ΅Π½ΠΈ, Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠ½ΡΡ
ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ² ΡΠΈΡΠΎΠ»ΠΈΠ·Π° ΠΠ»ΠΠ’, ΠΡΠΠ’, ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ Π±Π΅Π»ΠΊΠ°, Π³Π»ΡΠΊΠΎΠ·Ρ, ΠΌΠΎΡΠ΅Π²ΠΈΠ½Ρ Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ), Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π³ΠΈΡΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΊΠ°Π½ΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ. ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΎΠΏΡΡΠ° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π²ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ²ΠΈΠ»ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΊ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠΉ Π΄ΠΎΠΊΡΠΎΡΡΠ±ΠΈΡΠΈΠ½Π° ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΊ ΠΏΠ΅ΡΠ΅Π½ΠΈ. ΠΠΎ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠΌΡ ΡΠ΅ΠΉΡΠΈΠ½Π³Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°ΡΠΈΠΌΠΎΠ΅ Π³Π΅ΠΏΠ°ΡΠΎΡΡΠΎΠΏΠ½ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΡΠΎΡΠ²ΠΈΠ»Π° ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡ Π°ΠΌΠΈΠ½ΠΎΡΠ°Ρ
Π°ΡΠΎΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Π³ΠΈΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π° ΠΈ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Ρ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ, ΡΡΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠ±ΡΡΡΠ½ΡΡΡΡΡ ΡΠΈΠ½Π΅ΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π΅Π΅ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ², Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠΌ Π½Π° ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΈ ΡΠΈΡΠΎΠ»ΠΈΠ·Π°, ΡΠ³Π½Π΅ΡΠ΅Π½ΠΈΠ΅ Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΡ, Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΡΠ΅Π²ΠΈΠ½ΠΎΠΎΠ±ΡΠ°Π·ΡΡΡΠ΅ΠΉ, Π±Π΅Π»ΠΎΠΊΡΠΈΠ½ΡΠ΅Π·ΠΈΡΡΡΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΈ, Π½ΠΎΡΠΌΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° ΠΈ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ Π³ΠΈΠΏΠΎΠΏΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΡΠΊΠ°Π½ΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ Π°ΠΌΠΈΠ½ΠΎΡΠ°Ρ
Π°ΡΠΎΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Π³ΠΈΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Π° ΠΈ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΠΈΠ½Π° Ρ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Π΄Π»Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΈ ΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΡΠ΅ΠΊΡΠΎΠ² Π°Π½ΡΡΠ°ΡΠΈΠΊΠ»ΠΈΠ½ΠΎΠ²ΡΡ
Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠΎΠ² ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ.ΠΠ°Π²Π΅Π΄Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ ΡΠ° ΡΡ
ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΠΉ Π· ΡΠ»Π°Π²ΠΎΠ½ΠΎΡΠ΄ΠΎΠΌ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Ρ ΡΠΊΠΎΡΡΡ ΠΊΠΎΡΠ΅ΠΊΡΠΎΡΡΠ² Π³Π΅ΠΏΠ°ΡΠΎΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΡ Π°Π½ΡΡΠ°ΡΠΈΠΊΠ»ΡΠ½ΠΎΠ²ΠΈΡ
Π°Π½ΡΠΈΠ±ΡΠΎΡΠΈΠΊΡΠ², Π·ΠΎΠΊΡΠ΅ΠΌΠ° Π΄ΠΎΠΊΡΠΎΡΡΠ±ΡΡΠΈΠ½Ρ. Π ΡΠΊΠΎΡΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ Π²ΠΈΠ²ΡΠ°Π»ΠΈΡΡ ΡΡΠ±ΡΡΠ°Π½ΡΡΡ Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π³ΡΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Ρ Π² ΡΠΌΠΎΠ²Π½ΠΎ-ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ½ΡΠΉ Π΄ΠΎΠ·Ρ 50 ΠΌΠ³/ΠΊΠ³ ΡΠ° ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΡ Π°ΠΌΡΠ½ΠΎΡΡΠΊΡΡΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π³ΡΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Ρ Ρ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π· ΡΠ»Π°Π²ΠΎΠ½ΠΎΡΠ΄ΠΎΠΌ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Ρ ΡΠΏΡΠ²Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ 3:1 Π² ΠΏΠ΅ΡΠ΅ΡΠ°Ρ
ΡΠ½ΠΊΡ Π½Π° Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π³ΡΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄ Π² ΡΠΌΠΎΠ²Π½ΠΎ-ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ½ΡΠΉ Π΄ΠΎΠ·Ρ 82 ΠΌΠ³/ΠΊΠ³. Π£ ΡΠΊΠΎΡΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π»ΠΈ ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ Ρ Π΄ΠΎΠ·Ρ 20,5 ΠΌΠ³/ΠΊΠ³. ΠΠ»Ρ ΠΎΡΡΠ½ΠΊΠΈ ΡΡΡΠΏΠ΅Π½Ρ ΡΡΠ°ΠΆΠ΅Π½Π½Ρ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ ΡΠ° Π²ΠΈΡΠ°ΠΆΠ΅Π½ΠΎΡΡΡ Π³Π΅ΠΏΠ°ΡΠΎΡΡΠΎΠΏΠ½ΠΎΡ Π΄ΡΡ ΠΎΠ±ΡΠ°Π½ΠΈΡ
ΠΎΠ±βΡΠΊΡΡΠ² Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ Π½ΠΈΠ·ΠΊΡ Π±ΡΠΎΡ
ΡΠΌΡΡΠ½ΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡΠ² (ΡΡΠ²Π΅Π½Ρ Π’ΠΠ-ΡΠ΅Π°ΠΊΡΠ°Π½ΡΡΠ² ΡΠΈΡΠΎΠ²Π°ΡΠΊΠΈ ΠΊΡΠΎΠ²Ρ ΡΠ° Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°ΡΡ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ, Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΡΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠ½ΠΈΡ
ΡΠ΅ΡΠΌΠ΅Π½ΡΡΠ² ΡΠΈΡΠΎΠ»ΡΠ·Ρ ΠΠ»ΠΠ’, ΠΡΠΠ’, Π²ΠΌΡΡΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π±ΡΠ»ΠΊΠ°, Π³Π»ΡΠΊΠΎΠ·ΠΈ, ΡΠ΅ΡΠΎΠ²ΠΈΠ½ΠΈ Ρ ΡΠΈΡΠΎΠ²Π°ΡΡΡ ΠΊΡΠΎΠ²Ρ), Π° ΡΠ°ΠΊΠΎΠΆ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π³ΡΡΡΠΎΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΡΡΠ½Π΅ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ. ΠΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ Π΄ΠΎΡΠ»ΡΠ΄Ρ Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²ΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π½Ρ ΡΠΏΠΎΠ»ΡΠΊΠΈ ΠΏΡΠΎΡΠ²ΠΈΠ»ΠΈ Π·Π΄Π°ΡΠ½ΡΡΡΡ Π΄ΠΎ Π·ΠΌΠ΅Π½ΡΠ΅Π½Π½Ρ ΡΠΎΠΊΡΠΈΡΠ½ΠΈΡ
ΠΏΡΠΎΡΠ²ΡΠ² Π΄ΠΎΠΊΡΠΎΡΡΠ±ΡΡΠΈΠ½Ρ ΠΏΠΎ Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ Π΄ΠΎ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ. ΠΠ° ΡΡΠΌΠ°ΡΠ½ΠΈΠΌ ΡΠ΅ΠΉΡΠΈΠ½Π³ΠΎΠΌ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡΠ² Π½Π°ΠΉΠ±ΡΠ»ΡΡ Π·Π½Π°ΡΡΡΡ Π³Π΅ΠΏΠ°ΡΠΎΡΡΠΎΠΏΠ½Ρ Π΄ΡΡ Π²ΠΈΡΠ²ΠΈΠ»Π° ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΡ Π°ΠΌΡΠ½ΠΎΡΡΠΊΡΡΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π³ΡΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Ρ Ρ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π· ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ, ΡΠΎ ΠΌΠΎΠΆΠ΅ ΠΏΠΎΡΡΠ½ΡΠ²Π°ΡΠΈΡΡ ΡΠΈΠ½Π΅ΡΠ³ΡΡΠ½ΠΎΡ Π΄ΡΡΡ ΡΡ ΠΎΠΊΡΠ΅ΠΌΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡΠ², ΡΠΏΡΡΠΌΠΎΠ²Π°Π½ΠΎΡ Π½Π° ΡΠ½Π³ΡΠ±ΡΠ²Π°Π½Π½Ρ Π²ΡΠ»ΡΠ½ΠΎΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠ² Ρ ΡΠΈΡΠΎΠ»ΡΠ·Ρ, ΠΏΡΠΈΠ³Π½ΡΡΠ΅Π½Π½Ρ Π·Π°ΠΏΠ°Π»Π΅Π½Π½Ρ, Π²ΡΠ΄Π½ΠΎΠ²Π»Π΅Π½Π½Ρ ΡΠ΅ΡΠΎΠ²ΠΈΠ½ΠΎΡΡΠ²ΠΎΡΡΡΡΠΎΡ, Π±ΡΠ»ΠΎΠΊΡΠΈΠ½ΡΠ΅Π·ΡΡΡΠΎΡ ΡΡΠ½ΠΊΡΡΠΉ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ, Π½ΠΎΡΠΌΠ°Π»ΡΠ·Π°ΡΡΡ Π²ΡΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΡΠ½Ρ ΡΠ° Π·ΠΌΠ΅Π½ΡΠ΅Π½Π½Ρ Π³ΡΠΏΠΎΠΏΠ»Π°ΡΡΠΈΡΠ½ΠΈΡ
Π·ΠΌΡΠ½ Ρ ΡΠΊΠ°Π½ΠΈΠ½Ρ ΠΏΠ΅ΡΡΠ½ΠΊΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ ΠΎΠ±Π³ΡΡΠ½ΡΠΎΠ²ΡΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΡΡ Π°ΠΌΡΠ½ΠΎΡΡΠΊΡΡΠ² Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π³ΡΠ΄ΡΠΎΡ
Π»ΠΎΡΠΈΠ΄Ρ Ρ N-Π°ΡΠ΅ΡΠΈΠ»Π³Π»ΡΠΊΠΎΠ·Π°ΠΌΡΠ½Ρ Π· ΠΊΠ²Π΅ΡΡΠ΅ΡΠΈΠ½ΠΎΠΌ Π΄Π»Ρ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΎΡΠ΅ΠΊΡΡΡ ΡΠΎΠΊΡΠΈΡΠ½ΠΈΡ
Π΅ΡΠ΅ΠΊΡΡΠ² Π°Π½ΡΡΠ°ΡΠΈΠΊΠ»ΡΠ½ΠΎΠ²ΠΈΡ
Π°Π½ΡΠΈΠ±ΡΠΎΡΠΈΠΊΡΠ² ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ ΠΏΡΠΎΡΠΈΠΏΡΡ
Π»ΠΈΠ½Π½ΠΎΡ ΡΠ΅ΡΠ°ΠΏΡΡ
A Survey on the Krein-von Neumann Extension, the corresponding Abstract Buckling Problem, and Weyl-Type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains
In the first (and abstract) part of this survey we prove the unitary
equivalence of the inverse of the Krein--von Neumann extension (on the
orthogonal complement of its kernel) of a densely defined, closed, strictly
positive operator, for some in a Hilbert space to an abstract buckling problem operator.
This establishes the Krein extension as a natural object in elasticity theory
(in analogy to the Friedrichs extension, which found natural applications in
quantum mechanics, elasticity, etc.).
In the second, and principal part of this survey, we study spectral
properties for , the Krein--von Neumann extension of the
perturbed Laplacian (in short, the perturbed Krein Laplacian)
defined on , where is measurable, bounded and
nonnegative, in a bounded open set belonging to a
class of nonsmooth domains which contains all convex domains, along with all
domains of class , .Comment: 68 pages. arXiv admin note: extreme text overlap with arXiv:0907.144
- β¦