2,266 research outputs found

    The Effect of a Personalized Playlist on Older Adults with Dementia

    Get PDF
    Dementia is a disease that corrodes one’s cognitive abilities such as their memory, affecting around 5million people in the United States. While there is currently no treatment available to cure dementia,music therapy was found effective to help reduce its symptoms. Based on the Music and Memoryprogram, this study is aimed to examine the impact of listening to a personalized music playlist onobservable behavior, memory, and mood of older adults with dementia. The Music and Memory programwas applied to 6 older adults with dementia at a Retirement Center in Northwest Ohio. The findingsindicated that listening to a personalized playlist had a positive outcome on improving moods anddecreasing disruptive behavior of participants, with more increased eye contact, smiling, face relaxation,and responsiveness. This study suggests that personalized music is an effective intervention tool;therefore, social workers should take on the roles of educators, evaluators, brokers, and advocators inapplying Music and Memory program to clients with dementia

    The arithmetic recursive average as an instance of the recursive weighted power mean

    Get PDF
    The aggregation of multiple information sources has a long history and ranges from sensor fusion to the aggregation of individual algorithm outputs and human knowledge. A popular approach to achieve such aggregation is the fuzzy integral (FI) which is defined with respect to a fuzzy measure (FM (i.e. a normal, monotone capacity). In practice, the discrete FI aggregates information contributed by a discrete number of sources through a weighted aggregation (post-sorting), where the weights are captured by a FM that models the typically subjective ‘worth’ of subsets of the overall set of sources. While the combination of FI and FM has been very successful, challenges remain both in regards to the behavior of the resulting aggregation operators—which for example do not produce symmetrically mirrored outputs for symmetrically mirrored inputs—and also in a manifest difference between the intuitive interpretation of a stand-alone FM and its actual role and impact when used as part of information fusion with a FI. This paper elucidates these challenges and introduces a novel family of recursive average (RAV) operators as an alternative to the FI in aggregation with respect to a FM; focusing specifically on the arithmetic recursive average. The RAV is designed to address the above challenges, while also facilitating fine-grained analysis of the resulting aggregation of different combinations of sources. We provide the mathematical foundations of the RAV and include initial experiments and comparisons to the FI for both numeric and interval-valued data

    Data-informed fuzzy measures for fuzzy integration of intervals and fuzzy numbers

    Get PDF
    The fuzzy integral (FI) with respect to a fuzzy measure (FM) is a powerful means of aggregating information. The most popular FIs are the Choquet and Sugeno, and most research focuses on these two variants. The arena of the FM is much more populated, including numerically derived FMs such as the Sugeno λ-measure and decomposable measure, expert-defined FMs, and data-informed FMs. The drawback of numerically derived and expert-defined FMs is that one must know something about the relative values of the input sources. However, there are many problems where this information is unavailable, such as crowdsourcing. This paper focuses on data-informed FMs, or those FMs that are computed by an algorithm that analyzes some property of the input data itself, gleaning the importance of each input source by the data they provide. The original instantiation of a data-informed FM is the agreement FM, which assigns high confidence to combinations of sources that numerically agree with one another. This paper extends upon our previous work in datainformed FMs by proposing the uniqueness measure and additive measure of agreement for interval-valued evidence. We then extend data-informed FMs to fuzzy number (FN)-valued inputs. We demonstrate the proposed FMs by aggregating interval and FN evidence with the Choquet and Sugeno FIs for both synthetic and real-world data

    Modeling and measurement of tile drain controls in intensively managed landscapes

    Get PDF
    Tile drains are widely used in the Midwestern United States to improve the productivity of poorly drained agricultural fields. Since a tile drain reduces vadose zone soil moisture by lowering the water table, and its outlets feed directly into streams and ditches, tile flow can affect various hydrologic, biotic and biogeochemical processes in the watershed the streams. However, the effects of spatially resolved micro-topographic variability, such depressions and roadside ditches, on tile flow and their accumulated impact on ecohydrologic and nutrient dynamics remain poorly understood. Here we present an explicit model of tile flow and incorporated into the integrated ecohydrologic-flow model, MLCan-GCSFlow, to investigate the impacts of tile drain on ecohydrologic and nutrient dynamics in intensively managed agricultural fields at lidar-resolution scales. Explicit coupling between subsurface and tile flow is obtained by modifications of variably saturated Richards equation to capture the impacts of tile drain on soil moisture. The coupling between subsurface and overland flow is obtained by prescribing a boundary condition switching approach at the top surface of the computational domain. Model results for study sites in Critical Zone Observatory for Intensively Managed Landscapes (IMLCZO) show the significance of tile drain flow on the vertical and spatial soil moisture distribution and coupled surface - sub-surface flow dynamics

    Efficient modeling and representation of agreement in interval-valued data

    Get PDF
    Recently, there has been much research into effective representation and analysis of uncertainty in human responses, with applications in cyber-security, forest and wildlife management, and product development, to name a few. Most of this research has focused on representing the response uncertainty as intervals, e.g., “I give the movie between 2 and 4 stars.” In this paper, we extend upon the model-based interval agreement approach (IAA) for combining interval data into fuzzy sets and propose the efficient IAA (eIAA) algorithm, which enables efficient representation of and operation on the fuzzy sets produced by IAA (and other interval-based approaches, for that matter). We develop methods for efficiently modeling, representing, and aggregating both crisp and uncertain interval data (where the interval endpoints are intervals themselves). These intervals are assumed to be collected from individual or multiple survey respondents over single or repeated surveys; although, without loss of generality, the approaches put forth in this paper could be used for any interval-based data where representation and analysis is desired. The proposed method is designed to minimize loss of information when transferring the interval-based data into fuzzy set models and then when projecting onto a compressed set of basis functions. We provide full details of eIAA and demonstrate it on real-world and synthetic data

    A bidirectional subsethood based similarity measure for fuzzy sets

    Get PDF
    Similarity measures are useful for reasoning about fuzzy sets. Hence, many classical set-theoretic similarity measures have been extended for comparing fuzzy sets. In previous work, a set-theoretic similarity measure considering the bidirectional subsethood for intervals was introduced. The measure addressed specific concerns of many common similarity measures, and it was shown to be bounded above and below by Jaccard and Dice measures respectively. Herein, we extend our prior measure from similarity on intervals to fuzzy sets. Specifically, we propose a vertical-slice extension where two fuzzy sets are compared based on their membership values.We show that the proposed extension maintains all common properties (i.e., reflexivity, symmetry, transitivity, and overlapping) of the original fuzzy similarity measure. We demonstrate and contrast its behaviour along with common fuzzy set-theoretic measures using different types of fuzzy sets (i.e., normal, non-normal, convex, and non-convex) in respect to different discretization levels

    A Similarity Measure Based on Bidirectional Subsethood for Intervals

    Get PDF
    With a growing number of areas leveraging interval-valued data—including in the context of modelling human uncertainty (e.g., in Cyber Security), the capacity to accurately and systematically compare intervals for reasoning and computation is increasingly important. In practice, well established set-theoretic similarity measures such as the Jaccard and Sþrensen-Dice measures are commonly used, while axiomatically a wide breadth of possible measures have been theoretically explored. This paper identifies, articulates, and addresses an inherent and so far not discussed limitation of popular measures—their tendency to be subject to aliasing—where they return the same similarity value for very different sets of intervals. The latter risks counter-intuitive results and poor automated reasoning in real-world applications dependent on systematically comparing interval-valued system variables or states. Given this, we introduce new axioms establishing desirable properties for robust similarity measures, followed by putting forward a novel set-theoretic similarity measure based on the concept of bidirectional subsethood which satisfies both the traditional and new axioms. The proposed measure is designed to be sensitive to the variation in the size of intervals, thus avoiding aliasing. The paper provides a detailed theoretical exploration of the new proposed measure, and systematically demonstrates its behaviour using an extensive set of synthetic and real-world data. Specifically, the measure is shown to return robust outputs that follow intuition—essential for real world applications. For example, we show that it is bounded above and below by the Jaccard and Sþrensen-Dice similarity measures (when the minimum t-norm is used). Finally, we show that a dissimilarity or distance measure, which satisfies the properties of a metric, can easily be derived from the proposed similarity measure

    SPFI: shape-preserving Choquet fuzzy integral for non-normal fuzzy set-valued evidence

    Get PDF
    Information or data aggregation is an important part of nearly all analysis problems as summarizing inputs from multiple sources is a ubiquitous goal. In this paper we propose a method for non-linear aggregation of data inputs that take the form of non-normal fuzzy sets. The proposed shape-preserving fuzzy integral (SPFI) is designed to overcome a well-known weakness of the previously-proposed sub-normal fuzzy integral (SuFI). The weakness of SuFI is that the output is constrained to have maximum membership equal to the minimum of the maximum memberships of the inputs; hence, if one input has a small height, then the output is constrained to that height. The proposed SPFI does not suffer from this weakness and, furthermore, preserves in the output the shape of the input sets. That is, the output looks like the inputs. The SPFI method is based on the well-known Choquet fuzzy integral with respect to a capacity measure, i.e., fuzzy measure. We demonstrate SPFI on synthetic and real-world data, comparing it to the SuFI and non-direct fuzzy integral (NDFI)

    Novel similarity measure for interval-valued data based on overlapping ratio

    Get PDF
    In computing the similarity of intervals, current similarity measures such as the commonly used Jaccard and Dice measures are at times not sensitive to changes in the width of intervals, producing equal similarities for substantially different pairs of intervals. To address this, we propose a new similarity measure that uses a bi-directional approach to determine interval similarity. For each direction, the overlapping ratio of the given interval in a pair with the other interval is used as a measure of uni-directional similarity. We show that the proposed measure satisfies all common properties of a similarity measure, while also being invariant in respect to multiplication of the interval endpoints and exhibiting linear growth in respect to linearly increasing overlap. Further, we compare the behavior of the proposed measure with the highly popular Jaccard and Dice similarity measures, highlighting that the proposed approach is more sensitive to changes in interval widths. Finally, we show that the proposed similarity is bounded by the Jaccard and the Dice similarity, thus providing a reliable alternative
    • 

    corecore