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Data-Informed Fuzzy Measures for Fuzzy
Integration of Intervals and Fuzzy Numbers

Timothy C. Havens, Senior Member, IEEE, Derek T. Anderson, Senior Member, IEEE,
and Christian Wagner, Senior Member, IEEE

Abstract—The fuzzy integral (FI) with respect to a fuzzy
measure (FM) is a powerful means of aggregating information.
The most popular FIs are the Choquet and Sugeno and most
research focuses on these two variants. The arena of the FM
is much more populated, including numerically-derived FMs
such as the Sugeno λ-measure and decomposable measure,
expert-defined FMs, and data-informed FMs. The drawback of
numerically-derived and expert-defined FMs is that one must
know something about the relative values of the input sources.
However, there are many problems where this information is
unavailable, such as crowd-sourcing. This paper focuses on data-
informed FMs, or those FMs that are computed by an algorithm
that analyzes some property of the input data itself, gleaning the
importance of each input source by the data they provide. The
original instantiation of a data-informed FM is the agreement
FM, which assigns high confidence to combinations of sources
that numerically agree with one another. This paper extends
upon our previous work in data-informed FMs by proposing
the uniqueness measure and additive measure of agreement for
interval-valued evidence. We then extend data-informed FMs to
fuzzy number (FN)-valued inputs. We demonstrate the proposed
FMs by aggregating interval and FN evidence with the Choquet
and Sugeno FIs for both synthetic and real-world data.

Index Terms—fuzzy measure; fuzzy integral; data fusion;
sensor fusion; Sugeno integral; Choquet integral

I. INTRODUCTION

Aggregating multiple information sources is one basic ap-
proach used to answer questions or prove hypotheses. A way
that this is done with fuzzy sets is with the fuzzy integral
(FI). The discrete FI aggregates sources of information by
a weighted aggregation, where the weights are computed by
a fuzzy measure (FM) that models the (typically subjective)
“worth” of subsets of the sources. In most applications, the
measure is specified by an expert or learned (e.g., by a genetic
algorithm [1, 2]).

FIs and FMs have been proposed for many applications and
for many types of data, from simple numeric data to intervals
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and type-2 fuzzy sets [1–16]. While manual specification of
the FM works for small sets of sources (there are already
16 possible combinations of sources in the power set of 4
sources), manually specifying the values of the FM for large
collections of sources is all but impossible. Thus, automatic
methods have been proposed, such as the Sugeno λ-measure
[17] and the decomposable measure [18], which build the
measure from the densities (the worth of individual sources),
and genetic algorithm [1, 2], Gibbs sampling [19] and other
learning methods [20, 21], which build the measure by using
training data. These methods work well for scenarios in which
the worth of individual sources is known or training data are
available, but one could easily imagine aggregation problems
for which this information is unavailable (i.e., all problems
where no solution—ground truth—is known, thus training or
learning as such is not possible).

One area where this scenario is encountered is crowd-
sourcing. In this application, very little or no information is
available about the overall solution or the individual contribu-
tors and, hence, each individual is usually considered as having
an equally worthy contribution. However, this is clearly not
the reality as the crowd is usually composed of people with
varying levels of expertise on the topic. Furthermore, some in-
dividuals may not have altruistic aims and may knowingly (or
unknowingly) contribute erroneous information. In [22, 23],
methods were developed to filter contributors by ranking them;
however, these methods are purpose-built strategies and are not
appropriate for generalized approaches to aggregating crowd-
sourced information.

Another area where this scenario appears is that of bat-
tlefield situation awareness and intelligence gathering. While
commanders are very good at applying relative worth to mul-
tiple sources of information by extracting qualitative features
such as inflection, past experience, and intuition / instinct, it
is still a grand challenge for computers to accurately interpret
human communication in an efficient manner. The measures
we propose can be used by analysts to examine information
aggregation with respect to mathematical representations of
human-based aggregation factors, such as agreement, accord,
uniqueness, and specificity.

In our proposed approach—following on from our original
work on this topic [24, 25]—we aim to use the overall data
set to extract the worth of individual sources. In [24], we
focused on the creation of meta-measures (viz., combina-
tions of measures) with the purpose of aggregating based on
multiple criteria such as agreement and specificity, and in
[25] we further extended the notion of agreement to propose
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TABLE I
ACRONYMS AND NOTATION

FS fuzzy set FN fuzzy number
FM fuzzy measure AG agreement

GenA generalized accord AA additive agreement
SP specificity UQ uniqueness

X = {xi} set of sources (sensors, inputs, etc.)
h(xi), hi real-valued evidence offered by xi

h̄i interval-valued evidence offered by xi
Ĥi fuzzy number-valued evidence offered by xi
4
H triangular fuzzy number
gi density, numeric worth of xi
Ĥα level-cut of fuzzy-number Ĥ at α
π permutation function of h
Āi permuted set of evidence, Āi =

{h̄π(1), . . . , h̄π(i)}
ŪK(Āi), ÛK(Âi) sets defined in equations (8) and (29), respec-

tively
i = [m] notation for i = 1, 2, . . . ,m

i = [l : m] notation for i = l, l + 1, . . . ,m∫
h ◦ g fuzzy integral of h w.r.t. g∫

f(a)da Riemann integral of f(a) w.r.t. a
U = (u1, . . . ,uns )T discrete fuzzy set sampled at (y1, . . . , yns )T

the FM of generalized accord (GenA). In this paper, we do
a complete investigation of the work initially proposed in
[24, 25], propose an expanded set of data-derived FMs, and
develop ways in which we can characterize the behavior of
these FMs in relation to common aggregators such as min,
max, and average.

Section II introduces the FM and FI, then Section III de-
scribes methods for characterizing the behavior of a given FM
in terms of its similarity to max, min, and average aggregation
operators. In Section IV, we first discuss the existing FMs of
agreement and generalized accord [24, 25], exposing draw-
backs to these FMs. To combat these drawbacks, we propose
the additive FM of agreement, which, like GenA, is based
on aggregation of set-similarity functions (i.e., Jaccard and
Dice). We then propose a new FM of uniqueness, which is the
antithesis (or complement) of the agreement-type measures.
The last FM we discuss is the measure of specificity. The
FMs proposed in Section IV only work with interval-valued
evidence. Thus, we move to Section V, which describes the
FN extensions of the FMs proposed in Section IV. Lastly,
in Section VI we demonstrate the FMs by using the FI to
aggregate information in both synthetic and real-world data.
To assist the reader with the numerous acronyms and notation,
we have compiled a selected list in Table I.

II. FUZZY MEASURES AND INTEGRALS

Let X = {x1, . . . , xn} be a non-empty finite set (typically
of information sources or evidence) and g : 2X → [0,R+] be
a FM with the following properties [3]:

(P1) g(∅) = 0;
(P2) If A ⊆ B ⊆ X then g(A) ≤ g(B) ≤ 1 (g is monotonic

and non-decreasing).
Note that there is a third property for continuous FMs which is
not applicable in the case of discrete FMs such as those used
in this paper. Also, in most cases, the worth of the universal
set is constrained to 1, i.e., g(X) = 1, and we will assume

this for the rest of this article. The measure g is the (possibly
subjective) confidence or worth of each subset of X; hence,
P1 tells us that the worth of no sources, viz., the empty set ∅,
is 0. P2 follows intuition, in that if sources B contains sources
A, then B is worth as much, if not more, than A.

A couple well-known FMs are the Sugeno λ-measure [17]
and the decomposable measure [18]. Both are calculated by
a computational method where one only has to provide the
measure values of the densities, i.e., gi = g(xi). The FM
values for the non-singleton sets are built from the gi values.
However, this is the drawback of these FMs, and others like
them. They do not consider any synergistic combination of
sources, resulting in a boost of the FM values for combinations
of complementary sources. This drawback is the main reason
for our proposed research on this topic.

There are many forms of the FI; see [3] for detailed
discussion. In practice, FIs are mostly used for evidence fusion
[1, 4–7]. They combine sources of information by accounting
for both the support of the question (the evidence) and the
expected worth of each subset of sources (as supplied by
the FM g). Here, we focus on the discrete fuzzy Sugeno
and Choquet integrals, proposed by Murofushi and Sugeno
[26, 27]. Let h : X → R be a real-valued function that
represents the evidence or support of a particular hypothesis.1

The discrete fuzzy Sugeno and Choquet integral are defined,
respectively, as∫

S

h ◦ g = Sg(h) =

n∨
i=1

(
h(xπ(i)) ∧ g(Ai)

)
, (1a)

∫
C

h ◦ g = Cg(h) =

n∑
i=1

h(xπ(i)) [g(Ai)− g(Ai−1)] , (1b)

where π is a permutation of X , such that h(xπ(1)) ≥
h(xπ(2)) ≥ . . . ≥ h(xπ(n)), Ai = {xπ(1), . . . , xπ(i)}, and
g(A0) = 0 [10, 28]. Detailed treatments of the properties of
FIs can be found in [10, 28, 29].

In some cases, the evidence h cannot, or should not, be
represented simply by numbers; h would be better represented
as an interval-valued or FN-valued function. An example is the
survey question, “How many bottles of wine should I purchase
for the reception?” Many people would answer this question
with an interval, e.g., “between 20 and 30,” or a FN, e.g.,
“about 25.” Furthermore, there is much work on how to extract
intervals and fuzzy sets from data in real-world problems [30,
31]. Extensions of both the fuzzy Sugeno and fuzzy Choquet
integral have been proposed for both interval-valued and also
FN-valued integrands [8–12], which we now discuss.

Let I(R) = {ū ⊂ R|ū = [u−, u+], u− ≤ u+} be the set of
all closed intervals over the real numbers. Dubois and Prade
showed that if a function φ is continuous and non-decreasing,
then, when defined on intervals, φ produces an interval the
endpoints of which are equal to the function values on the
lower and upper bound of the individual intervals, viz., φ(ū) =
[φ(u−), φ(u+)]. This approach benefits us in computing FIs

1Generally, when dealing with information fusion problems it is convenient
to have h : X → [0, 1], where each source is normalized to the unit-interval.
This is also the appropriate space of h for use with the Sugeno FI when using
the definition g ∈ [0, 1].
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for intervals as they are continuous and non-decreasing. Let
h̄ : X → I(R), where h̄i = h̄(xi) = [h−i , h

+
i ] is interval-

valued integrand (evidence). The FI on h̄ is∫
h̄ ◦ g =

[∫
h− ◦ g,

∫
h+ ◦ g

]
, (2)

where the output
∫
h̄ ◦ g is itself interval-valued.

Now, let Ĥ : X → FN(R) be a FN-valued integrand. Using
the Extension Principle, the FI of Ĥ w.r.t. g is then defined as(∫

Ĥ ◦ g
)

(a) = sup
α∈[0,1]

{
a ∈

∫
αĤ ◦ g

}
, (3)

where αĤ = [αh−, αh+] are the closed intervals of the level-
cuts of the members of Ĥ at α. Note that αĤ is not necessarily
one continuous interval, but the set of intervals (or discontin-
uous interval) formed by taking the level-cut of each Ĥi ∈ Ĥ .
Hence αĤ = {[(αĤ1)−, (αĤ1)+], . . . , [(αĤn)−, (αĤn)+]}
and αh− = {(αĤ1)−, . . . , (αĤn)−} (and similarly defined
for αh+). Equation (3) can alternatively be written as(∫

Ĥ ◦ g
)

(a) =
⋃

α∈[0,1]

α

[(∫
αĤ ◦ g

)
(a)

]
, (4a)

=
⋃

α∈[0,1]

α

[(∫
αh− ◦ g

)
(a),

(∫
αh+ ◦ g

)
(a)

]
, (4b)

where a is the independent variable of the FI (i.e., a ∈ [0, 1]
for the Sugeno FI or a ∈ R for the Choquet FI).

Other extensions to FIs are proposed for sub-normal FSs
[1, 12], sub-normal non-convex FSs [32], type-2 FNs [11, 33,
34], and for non-numeric FMs [2, 35–38].

III. INDICES OF FUZZY MEASURE BEHAVIOR

While there are several ways to compose a FM—e.g., the
aforementioned Sugeno λ-measure and decomposable mea-
sure, or by experts—there are also measures that produce well-
known aggregation operators directly when coupled with the
Choquet FI. For example, with respect to the Choquet FI, the
average, minimum, and maximum manifest as the following
measures, respectively,

gAVG(Ai) = i/n, i = [0 : n], (5a)

gMIN (Ai) =

{
1 i = n,

0 i < n,
(5b)

gMAX(Ai) =

{
1 i > 0,

0 i = 0.
(5c)

Hence, FMs can be characterized by comparing them with
these well-known operators, e.g., FMs that have values all
near to i/n mimic the average. We now propose an index of
similarity by which any FM can be compared to the operators
at (5).

Consider the distance between two measures, g1 and g2, as

∆(g1, g2;A) =
‖g1 − g2‖2

n− 1
,

where g = (g(A1), . . . , g(An−1))T is the vector of the (pos-
sibly unique) FM values computed on each of Ai, i = [n−1],

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8

1

Similarity to aggregation operator

M
em
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rs
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p

Fig. 1. Membership function with input of similarity value S and output of
membership in the respective aggregation operator.

and ‖·‖2 is squared Euclidean distance. The FM values, g(A1)
to g(An−1), are only used because g(A0) = 0 and g(An) = 1;
thus, these two boundary conditions on the measure provide
no information on the distance between two measures. It can
be shown that 0 ≤ ∆(g1, g2;A) ≤ 1; hence, the similarity
between two measures is computed as

S(g1, g2;A) = 1−∆(g1, g2;A). (6)

We use S(g1, g2;A) to compare any given measure to the
average, minimum, and maximum measures (w.r.t. the Cho-
quet integral) at (5). These prototype similarities are notated
as SAVG(g) = S(g, gAVG), SMAX(g) = S(g, gMAX), and
SMIN (g) = S(g, gMIN ), respectively. We drop the notation
of the set ordering A, assuming that g and, say, gAVG are
computed on the same set ordering. However, the next remark
illustrates an intuitive problem with only using the similarities
(and not some processed form of them as proposed next).

Remark 1. It is interesting to note that SMIN (gMAX) =
SMAX(gMIN ) = 0 (as they are duals) and SMIN (gAVG) =
SMAX(gAVG) = SAVG(gMIN ) = SAVG(gMAX) = 1 −∑n−1
i=1 (i/n)2/(n − 1). In the limit as n → ∞, the similarity

of gAVG to both gMIN and gMAX goes to 2/3. Furthermore,
it can be shown that, ∀g,

0 ≤ SMIN (g) ≤ 1; 0 ≤ SMAX(g) ≤ 1;

2/3 ≤ 1−
n−1∑
i=1

(i/n)2/(n− 1) ≤ SAVG(g) ≤ 1.

Because of this, we believe that this similarity index is much
better at determining the behavior of a FM relative to min
and max, but not as resolved when comparing to an average
aggregator. Also, intuitively we wish to create a method to
index the behavior of a FM such that it is definitively (in
the fuzzy sense) one of average, min, or max. Hence, we
propose the fuzzy membership function in Fig. 1, which takes
as input SAVG(g), SMIN (g), or SMAX(g), and returns the
membership of the FM in the respective aggregation operator.
We will use the similarity function at (6) together with the
membership function

µ(S) =

{
0 S < 2/3,

3S − 2 S ≥ 2/3,

as shown in Fig. 1 to characterize the data-derived FMs in our
experiments.

IV. DATA-INFORMED FUZZY MEASURES ON INTERVALS

Consider a collection of inputs X , such that you have no
prior knowledge about the relative worth of each input. Ex-
amples include crowd-sourced informations, ranges of sensor
readings, and anonymous survey results.
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A. Measure of agreement

Consider the interval-valued evidence h̄ = {h̄1, . . . , h̄n}.
The FM of agreement proposed in [24] is computed as

g̃AG(Ā0) = g̃AG(Ā1) = 0, (7a)

g̃AG(Āi) =

∣∣∣∣∣
i−1⋃
k1=1

i⋃
k2=k1+1

h̄π(k1) ∩ h̄π(k2)

∣∣∣∣∣ z2+ (7b)∣∣∣∣∣
i−2⋃
k1=1

i−1⋃
k2=k1+1

i⋃
k3=k2+1

h̄π(k1) ∩ h̄π(k2) ∩ h̄π(k3)

∣∣∣∣∣ z3+

. . .+
∣∣h̄π(1) ∩ h̄π(2) ∩ . . . ∩ h̄π(i)

∣∣ zi, i = [2 : n],

where Ā0 = ∅, Āi = {h̄π(1), . . . , h̄π(i)} is the permuted set of
intervals, and zi is the weight of each term.2 Note that g̃AG

in (7b) is not, yet, a true FM as it is not normalized; hence,
we include the tilde notation. In [24], zi = i/n; however, one
could use any values for zi, such that z2 ≤ z3 ≤ . . . ≤ zn.
Let ŪK(Āi) be the interval defined by (8), then (7b) can be
rewritten as

g̃AG(Āi) =

i∑
K=2

∣∣ŪK(Āi)
∣∣ zK , i = [2 : n]. (9)

Note that ŪK(Āi) is not necessarily a closed (i.e., continuous)
interval; hence, the length of ŪK(Āi) is the summed length of
all the continuous sub-intervals that comprise ŪK(Āi). This
formulation shows that g̃AG is the weighted summation of
the cardinalities (lengths) of (i − 1) (perhaps, discontinuous)
intervals, where the Kth term, ŪK(Āi), is composed of
the union of the intersections of the K-tuples in Āi ⊆ h̄.
The measure of agreement formulation at (9) leads to the
following theorem as well as a computationally efficient way
of calculating g̃AG for use in the Choquet integral.

In practice, gAG is normalized by

gAG(Āi) =
g̃AG(Āi)

g̃AG(h̄)
, i = [2 : n], (10)

so that gAG(h̄) = 1. We now show that gAG is a FM and that
it can be computed efficiently.

Theorem 1. The FM of agreement at (7) is monotonic and
non-decreasing.

Before we prove this theorem, we require a couple corol-
laries.

Corollary 1. If a function f is monotonic, and non-decreasing
then αf is also monotonic, non-decreasing for α > 0.

This corollary shows that we only need to prove that g̃AG

is monotonic and non-decreasing as gAG = αg̃AG, where α =
(g̃AG(h̄))−1.

Corollary 2. |ŪK(Āi−1)| ≤ |ŪK(Āi)|, K = [i], i = [2 : n].

2Note that (7) was written incorrectly in [24]. The last term in the
summation was given a weight of zn, which should be zi as shown in (7).
Furthermore, we add the tilde notation to (7b) because it is later normalized
to ensure gAG(h̄) = 1.

Proof: First, by setting K = 1, we see that

Ū1(Āi) =

i⋃
k1=1

h̄π(k1), i = [n].

Thus, we see that Ū1(Āi) = Ū1(Āi−1) ∪ h̄π(i), i = [2 : n]. It
follows that

|Ū1(Āi−1)| ≤ |Ū1(Āi)|,

which proves the corollary for K = 1, i = [2 : n].
By inspection, we can write (8) as (11), and by the distribu-

tive property, we can further reduce (11) to

ŪK(Āi) = ŪK(Āi−1) ∪
(
ŪK−1(Āi−1) ∩ h̄π(i)

)
, (12)

which holds true for K = [2 : i], i = [2 : n]. The proof is
complete because (12) implies that

|ŪK(Āi−1)| ≤ |ŪK(Āi)|, K = [2 : i], i = [2 : n].

We can now prove Theorem 1.
Proof: For set Āi−1 ⊂ Āi, Corollary 2 shows that

g̃AG(Āi−1) =

i−1∑
K=2

|ŪK(Āi−1)|zK

≤
i∑

k=2

|ŪK(Āi)|zK = g̃AG(Āi),

proving the theorem.
The formulation of gAG(Āi), coupled with Theorem 1,

shows that gAG obeys the properties P1 and P2 of a FM.

Remark 2. Equation (12) gives us a computationally efficient
way to compute g̃AG(Āi), i = [2 : n]. The method is as
follows:

1) gAG(Ā1) = 0;
2) For i = [2 : n], compute and store ŪK(Āi), K = [2 : i],

by the recursive formulation at (12);
3) Compute g̃AG(Āi) at (9);
4) Normalize by (10).

A drawback of the AG measure becomes evident when it
is used with the FI. Figure 2 shows the result of the Choquet
FI on two sets of intervals, where the FM is calculated by the
AG measure. As the figure shows, the only difference between
the two sets of intervals is that the end-points are flipped
(each end point is made negative). However, the resulting
Choquet integrals of h̄ and −h̄ show that the result is not
symmetric; i.e., Cg(h̄) 6= −Cg(−h̄)—where we would prefer
intuitively that Cg(h̄) = −Cg(−h̄). This is because the AG
measure of the singletons is zero, i.e., gAG(Ā1) = 0. Hence,
if we examine the FI integral equations at (1), we see that
source h(xπ(1)) is always ignored. The ignored source is only
dependent on the ordering, not on any perceived agreement—
there is a disconnect between our modeling of the concept of
agreement as a FM and the what happens when we use it with
the Choquet FI (or Sugeno FI, for that matter).3

3Unfortunately, the GenA measure also suffers from this drawback. Later,
we will define an additive measure of agreement that solves this problem.
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ŪK(Āi) =

i−K+1⋃
k1=1

i−K+2⋃
k2=k1+1

. . .

i⋃
kK=kK−1+1

(
h̄π(k1) ∩ h̄π(k2) ∩ . . . ∩ h̄π(kK)

)
, K = [i], i = [n], (8)

ŪK(Āi) = ŪK(Āi−1) ∪


((i−1)−(K−1)+1)⋃

k1=1

((i−1)−(K−1)+2)⋃
k2=k1+1

· · ·
i−1⋃

kK−1=kK−2+1

(
h̄π(k1) ∩ h̄π(k2) ∩ . . . ∩ h̄π(kK−1) ∩ h̄π(i)

) (11)

Src 1
Src 2
Src 3
Src 4
Src 5

AG

(a) Scenario A

Src 1
Src 2
Src 3
Src 4
Src 5

AG

(b) Scenario B

Fig. 2. Example that shows the non-symmetric result of the FI using the
AG measure; i.e., Cg(h̄) 6= −Cg(−h̄).

(1)

U2({(1),(2),(3)})

U3({(1),(2),(3)})

(2)
(3)

(a) Scenario A

(1)

U2({(1),(2),(3)})

U3({(1),(2),(3)})

(2)
(3)

(b) Scenario B

Fig. 3. Two scenarios that each show the union of the intersections of the
2-tuples and 3-tuples for three sources of information.

A second potential drawback of the AG measure is that the
cardinality of the interval(s) composed by (8) only captures
the overall length and not necessarily the agreement of the
intervals. Consider the example shown in Fig. 3. Scenarios A
and B each show three sources of information as intervals,
sources {(1), (2), (3)}. We believe that most human observers
would say that the sources in Scenario B agree more than the
sources in Scenario A. However, if we examine the lengths
of the intervals Ū2(Ā3) and Ū3(Ā3) that would be summed
to compute gAG(Ā3), we clearly see that Scenario A would
give a much higher value of g, and thus more importance to
the combination of the three sources (recall that g(AG)(Ā3) =
|Ū2(Ā3)|z2 + |Ū3(Ā3)|z3). Furthermore, it can be shown that
every combination of sources in Scenario A are given a higher
agreement by gAG than those in Scenario B. This drawback
leads us to define the measure of generalized accord next.

B. Measure of generalized accord

We begin our derivation of generalized accord with a
definition of similarity indices on sets of intervals.

Definition 1. The function s : Āi → [0, 1] is a similarity index
on sets of intervals Āi = {h̄π(1), h̄π(2), . . . , h̄π(i)} such that

1) s(∅) = 0; (boundary at 0)

2) s(Āi) = 1 iff h̄π(1) = h̄π(2) = . . . = h̄π(i); (boundary
at 1)

3) s is symmetric.

Two similarity indices that fit this definition are Jaccard’s
similarity index and Dice’s coefficient, defined respectively as

sJ(h̄) =
|
⋂|h̄|
i=1 h̄i|

|
⋃|h̄|
i=1 h̄i|

; (13a)

sD(h̄) =
|h̄||
⋂|h̄|
i=1 h̄i|∑|h̄|

i=1 |h̄i|
, (13b)

where h̄ is some set of interval evidence, |h̄| is the car-
dinality or number of intervals in h̄, and |h̄i| is the
length of interval h̄i—e.g., in Eq.(14), the input to s is{
h̄π(k1), h̄π(k2), . . . , h̄π(kK)

}
. The strength of Dice’s coeffi-

cient is that the interval union does not need to be calculated,
resulting in a less computationally complex similarity index.
Furthermore, both Jaccard and Dice’s similarity index are
dissimilarity (distance) metrics when transformed by (1− s).

Using s, we propose the GenA measure at (14), where the
binomial coefficient term

(
n
K

)−1
accounts for the number of

possible K-tuples in h̄. Equation (14) can be written in a
similar spirit as (9),

gGenA(Āi) = αh̄

i∑
K=2

sK(Āi), i = [2 : n], (15)

where

sK(Āi) =

(
n

K

)−1 i−K∑
k1=1

i−K+1∑
k2=k1+1

. . . (16)

i∑
kK=kK−1+1

s
({
h̄π(k1), h̄π(k2), . . . , h̄π(kK)

})
.

The quantity sK(Āi) is the sum of the similarities of the K-
tuples in Āi, weighted by an overall value of

(
n
K

)−1
. Hence,

sK(h̄) is the average value of the similarities of all K-tuples
in h̄.

Remark 3. The constant multiple αh̄ is computed as

αh̄ =

(
n∑

K=2

sK(Ān)

)−1

, (17)

so that gGenA(h̄) = 1. If h̄1 = h̄2 = . . . = h̄n then αh̄ =
1/(n−1). This results from the boundary condition of s(B̄) =
1, where B̄ is any non-empty subset of h̄, and that there are(
n
K

)
terms in each of the K inner summations in (17); hence,

sK(Ān) = 1, K = [2 : n].
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gGenA(Āi) =

{
0, i = 0, 1

αh̄
∑i
K=2

(n
K

)−1
[∑i−K

k1=1

∑i−K+1
k2=k1+1 . . .

∑i
kK=kK−1+1 s

({
h̄π(k1), h̄π(k2), . . . , h̄π(kK)

})]
, i = [2 : n],

(14)

Theorem 2. The GenA measure at (14) and (15) is monotonic
and non-decreasing, and gGenA(h̄) = 1.

Proof: Proving that gGenA(h̄) = 1 is trivial. Simply
substitute αh̄ at (17) into (14) and notice that Ān = h̄ and,
thus, i = n in (14).

To prove that (14) is monotonic, we use the formulation at
(15) and rewrite it as (18). Since all quantities in (18) are ≥
0, this shows that gGenA(Āi) ≥ gGenA(Āi−1). Furthermore,
because Āi−1 ⊂ Āi, this proves that the GenA measure at
(14) is monotonic and non-decreasing.

Remark 4. Theorem 2 shows that the GenA measure is a FM
that obeys properties P1 and P2. This is true for any similarity
index s : Āi → [0, 1] that adheres to Definition 1.

Remark 5. The equation at (18) also illustrates how the GenA
measure can be efficiently computed by incrementing through
the lattice Āi, i = [n]. In practice, one can simply start
with gGenA(Ā1) = 0 in the recursive formulation at (18).
Also, we can distribute αh̄ out of (18) and simply recursively
calculate the value gGenA(Āi)/αh̄ for the entire lattice, saving
the calculation of αh̄ for the end of the computation (i.e., the
normalization step).

Remark 6. The formulation of the GenA measure is gen-
eralized such that Theorem 2 applies for similarity indices
on other types of inputs, such as FNs (type-1, type-2, etc.),
distributions, etc. The only requirement is that the similarity
function s be designed for the given input type according to
Definition 1. We will discuss this further in Section V.

Using the AG or GenA measure, we can calculate the FI
for interval evidence h̄ by the following steps:

1) Determine the permutation functions π− and π+, such
that h−π−(1) ≥ h−π−(2) ≥ . . . ≥ h−π−(n) and h+

π+(1) ≥
h+
π+(2) ≥ . . . ≥ h

+
π+(n);

2) Calculate the portions of the FM lattice, g(Ā−i ) and
g(Ā+

i ), using the AG or GenA measure, where Ā−i =
{h̄π−(1), . . . , h̄π−(i)}, Ā+

i = {h̄π+(1), . . . , h̄π+(i)};
3) Compute

∫
h̄ ◦ g = [

∫
h− ◦ g,

∫
h+ ◦ g].

The AG and GenA measures are interesting in their formu-
lation of worth by aggregating (agreements or) similarities of
sets of K-tuples of intervals. However, they both suffer from
asymmetry between positive- and negative-valued intervals.
The next measure, the additive measure of agreement, keeps
the same spirit of valuing intervals that agree, but it also
alleviates the asymmetry issue.

C. Additive measure of agreement

Consider a similarity function s as in Definition 1. The
additive measure of aggreement (AA) is defined as

g̃AA(Āi) = g̃AA(Āi−1) +

n∑
j=1
j 6=i

sp(h̄j , h̄π(i)), i = [n], p ≥ 0,

(19)
where p is a tuning parameter such that p > 1 weights high
similarity more heavily and p < 1 weights similarity more
evenly. Note that p = 0 produces a FM that weights each piece
of evidence equally. Unless otherwise mentioned, we will use
a value of p = 1 for this paper. The FM gAA is formed by the
normalization step gAA(Āi) = g̃AA(Āi)/g̃

AA(Ān). The AA
measure is clearly an additive measure, i.e., gAA(Ā ∪ B̄) =
gAA(Ā) + gAA(B̄), Ā ∩ B̄ = ∅. Hence, the Choquet integral
(operated on the left or right interval end-points) reduces to

CgAA(h) =

∑n
i=1 hπ(i)

∑n
j=1
j 6=i

sp(h̄j , h̄π(i))∑n
i,j=1 s

p(h̄i, h̄j)
,

where, clearly, this is just a weighted average; each source is
weighted by its aggregated similarity with all other sources
divided by the total similarity of all pairs of sources—or, in
words, how much each source agrees with all other sources.

D. Measure of uniqueness

We propose that the combination of unique sources is the
antithesis of the notion of agreement or accord. That is, a set
of unique sources is that where each source is providing a
unique (or different) answer to the question. Hence, sets of
sources that do not agree are sets of sources that are unique.

Consider the dissimilarity function d : h̄→ [0, 1], which is
related to the similarity function s at Definition 1 by

d(h̄) = 1− s(h̄). (20)

With this notion of dissimilarity, we can directly substitute
d(h̄) into the GenA or AA measures, directly producing
uniqueness measures. We will denote these as gUQGenA and
gUQAA .

The FM of uniqueness based on the GenA measure for
interval inputs h̄ is

gUQGenA(∅) =gUQGenA(Ā1) = 0, (21a)

gUQGenA(Āi) =βh̄

i∑
K=2

dK(Āi), (21b)

dK(Āi) =

(
n

K

)−1 i−K∑
k1=1

i−K+1∑
k2=k1+1

. . . (21c)

i∑
kK=kK−1+1

d
({
h̄π(k1), h̄π(k2), . . . , h̄π(kK)

})
.



7

gGenA(Āi) =αh̄

si(Āi) +

i−1∑
K=2

(n
K

)−1
(i−1−K)∑
k1=1

(i−1−K)+1∑
k2=k1+1

. . .

i−1∑
kK=kK−1+1

s
({
h̄π(k1), h̄π(k2), . . . , h̄π(kK), h̄π(i)

})
+ gGenA(Āi−1), i = [2 : n] (18)

where dK(Āi) at (21c) is formed analogous to sK(Āi) at (16)
and βh̄ is a normalization factor. We now show that we do not
need to calculate gUQGenA by directly summing the dK(Āi)
terms. Instead, we formulate gUQGenA directly from gGenA,
as the following proposition and theorem show.

Proposition 1. The aggregated dissimilarities at (21c) can be
computed as

dK(Āi) = 1− sK(Āi). (22)

Proof: Substituting (20) into (21c) and collecting terms
proves the proposition.

Theorem 3. The FM of uniqueness can be calculated in terms
of the FM of generalized accord as

gUQGenA(Āi) =
(i− 1)αh̄ − gGenA(Āi)

(n− 1)αh̄ − 1
, i = [2 : n],

(23)
where αh̄ is the normalization factor given at (17).

Proof: First, we substitute (22) into (21b) giving

gUQGenA(Āi) = βh̄

i∑
K=2

(1− sK(Āi)), (24a)

= βh̄

(
i− 1−

i∑
K=2

sK(Āi)

)
. (24b)

Using the FM property that g(Ān) = 1, the normalizing
coefficient βh̄ is

βh̄ =

(
n− 1−

n∑
K=2

sK(Ān)

)−1

=
αh̄

(n− 1)αh̄ − 1
, (25)

wherein we have substituted the formulation for αh̄ at (17).
Finally, we substitute (25) into (24b), resulting in the formu-
lation for gUQGenA at (23).

Remark 7. The formulation for gUQGenA at (23) is fast to
compute as one can use the recursive calculation of the GenA
measure and directly follow with the calculation of gUQGenA .
Also, this shows the inverse relationship of uniqueness and
accord, which is intuitively pleasing.

Remark 8. If the intervals in inputs h̄ are all completely
disjoint then αh̄ = 0 and gGenA(Āi) = i/n, i = [n]. Hence,
(23) shows that gUQ(Āi) = gGenA(Āi) = i/n for completely
disjoint inputs. In the spirit of uniqueness this is intuitively
pleasing; when all sources are unique, then all sources should
be weighted equally in the FI. This is also the case when
h̄1 = h̄2 = . . . = h̄n, or when no source is unique.

The UQ measure based on the AA measure is created by

substituting the dissimilarity function d into (19) producing

g̃UQAA(Āi) = g̃UQAA(Āi−1) + n− 1−
n∑
j=1
j 6=i

s(h̄j , h̄π(i)),

which can by shown to be equivalent to

g̃UQAA(Āi) =gUQAA(Āi−1) +

n∑
j=1
j 6=i

d(h̄j , h̄π(i)),

=gUQAA(Āi−1) +

n∑
j=1
j 6=i

(
1− s(h̄j , h̄π(i))

)
,

=g̃UQAA(Āi−1) + n− 1

−
(
g̃AA(Āi)− g̃AA(Āi−1)

)
.

Like the GenA-based UQ measure, this shows that the AA-
based UQ measure is also easy to compute once you have
computed the AA measure. Furthermore, it is also an additive
measure, and when coupled with the Choquet integral pro-
duces a weighted average where the ith source is weighted by
n− 1−

(
g̃AA(Āi)− g̃AA(Āi−1)

)
.

Remark 9. Consider a set of sources h̄ =
{h̄11, . . . , h̄1n1

, h̄21, . . . , h̄2n2
, . . .} where there are multiple

copies of several sources, i.e., there are ni sources that are
equal, h̄i1 = h̄i2 = . . . = h̄ini

, for i = [n], where n is
some number of unique sources. It can be shown that in this
scenario that the UQAA measure with the Choquet integral
simplifies to

Cg(h̄) =

[
1

n

n∑
i=1

h−i1,
1

n

n∑
i=1

h+
i1

]
,

or to the average of the unique sources (in this equation, the
first instance of each group), where each unique source h̄i1 is
only considered once in the average. In essence, the UQAA
measure with the Choquet integral is only aggregating one
instance from each matching group of sources. Hence, each
unique group of evidence is considered equally, no matter how
many sources fall into each group.

We now turn to our last proposed FM for sets of interval-
based evidence.

E. Measure of specificity

The FM of specificity, unlike the agreement and accord
measures, is defined on the singletons or densities of the FM.
First, the relative length as compared to the smallest interval-
valued source is calculated,

δ(h̄i) =
minh̄j∈h̄{h

+
j − h

−
j }

h+
i − h

−
i

. (26a)
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Src 1
Src 2

Src 3
Src 4

AG
GenA

UQGenA

AA
UQAA

SP
AVG

(a) Interval-valued sources with Choquet FI results for
data-derived FMs

{1}
gAG = 0

gGenA = 0
gAA = 0

gUQGenA = 0
gUQAA = 0.31
gSP = 0.02

{2}
gAG = 0

gGenA = 0
gAA = 0.08
gUQGenA = 0

gUQAA = 0.30
gSP = 0.04

{3}
gAG = 0

gGenA = 0
gAA = 0.46
gUQGenA = 0

gUQAA = 0.20
gSP = 0.48

{4}
gAG = 0

gGenA = 0
gAA = 0.46
gUQGenA = 0

gUQAA = 0.20
gSP = 0.48

{1,2,3}
gAG = 0.4

gGenA = 0.07
gAA = 0.54

gUQGenA = 0.71
gUQAA = 0.80
gSP = 0.53

{1,2,4}
gAG = 0.4

gGenA = 0.07
gAA = 0.54

gUQGenA = 0.71
gUQAA = 0.80
gSP = 0.53

{1,3,4}
gAG = 0.4

gGenA = 0.76
gAA = 0.92

gUQGenA = 0.66
gUQAA = 0.71
gSP = 0.96

{2,3,4}
gAG = 1

gGenA = 1
gAA = 1

gUQGenA = 0.64
gUQAA = 0.69
gSP = 0.98

{1,2}
gAG = 0

gGenA = 0
gAA = 0.08

gUQGenA = 0.36
gUQAA = 0.60
gSP = 0.07

{1,3}
gAG = 0

gGenA = 0
gAA = 0.46

gUQGenA = 0.36
gUQAA = 0.51
gSP = 0.49

{1,4}
gAG = 0

gGenA = 0
gAA = 0.46

gUQGenA = 0.36
gUQAA = 0.51
gSP = 0.49

{2,3}
gAG = 0.4

gGenA = 0.07
gAA = 0.54

gUQGenA = 0.35
gUQAA = 0.49
gSP = 0.51

{2,4}
gAG = 0.4

gGenA = 0.07
gAA = 0.54

gUQGenA = 0.35
gUQAA = 0.49
gSP = 0.51

{3,4}
gAG = 0.4

gGenA = 0.76
gAA = 0.92

gUQGenA = 0.30
gUQAA = 0.40
gSP = 0.93

(b) Lattice of FM values

Fig. 4. Comparison of FMs and Choquet integral results for four interval-
valued inputs.

Then the densities are computed as the normalized values of
these lengths,

g(h̄i) =
δ(h̄i)∑n
j=1 δ(h̄j)

. (26b)

Clearly, the sum of the densities are equal to 1; hence, the
specificity measure is calculated as the probability measure

gSP (Āi) =

i∑
k=1

g(h̄π(k)). (26c)

The specificity measure weights each interval source inversely
proportional to the source’s length. Thus, relatively certain (or
small length) intervals are weighted higher than uncertain (or
long length) intervals.

Example 1. Figure 4 shows an example of using the proposed
data-derived FMs for a set of 4 interval-valued sources. The
values of these sources are h̄1 = [0, 2], h̄2 = [3, 4.1], h̄3 =
[4, 4.1], and h̄4 = [4, 4.1]. The Jaccard similarity was used for
the GenA and AA measures. The result of the fuzzy Choquet
integral using the proposed data-derived FMs is shown along
with the illustration of the 4 sources in view (a), while the FM
lattice is shown in view (b) of Fig. 4.

Comparing the AG, GenA, and AA results shows that each
of these FMs places more weight on sets of evidence that
include sources 2, 3, and 4; however, both GenA and AA
clearly give higher weight to the combination of sources {3
and 4}, which according to those measures agree more than
{2 and 3} or {2 and 4}; this is intuitively pleasing. The AG
measure actually weights the combinations of {3 and 4}, {2

and 3}, and {2 and 4} as all having equal agreement with a
FM value of 0.4; this is because the length of the interval of the
intersection of those three combinations is the same. Unlike
the AG and GenA measures, the AA measure also weights the
singletons and shows that sources 3 and 4 have the highest
weight of 0.46, compared to 0.08 of source 2 (which agrees
slightly with 3 and 4) and 0 of source 1. In essence, the AA
measure represents the agreement of sources all throughout
the lattice of the measure, including at the singleton level.
Lastly, as the Choquet integral results show, the GenA and
AA aggregation results are biased more towards sources 3 and
4 than the AG measure (which considers 2, 3, and 4 to have
equal weight).

The UQ measures both show that the Choquet integral result
is now including the unique evidence, i.e., source 1, in its
aggregation, with the GenA-based UQ result being slightly
more biased towards source 1 than the AA-based UQ result.
Finally, the SP measure, which weights sources according
to their specificity, is weighted very much toward sources 3
and 4, which are the most specific. This toy example clearly
illustrates the behavior of these measures. We will investigate
more results, including those with real data, in Section VI.
We now extend the proposed data-informed FMs to FN-valued
evidence.

V. DATA-INFORMED FUZZY MEASURES ON FUZZY
NUMBERS

Consider a set of FN-valued inputs Ĥ = {Ĥ1, . . . , Ĥn},
Ĥi ∈ FN(R). We now extend the measures proposed in
Section IV to FN-valued inputs Ĥ .

A. Measure of agreement

The notion of agreement for interval-valued sources was that
the length of the intersection of the sources is proportional
to the level of agreement of the sources (more completely,
agreement is the weighted sum of the lengths of unions of
intersections of k-tuples in the set of intervals). For FN-
valued sources, we propose that agreement is captured by a
function r that represents some property about the union of
the intersections of K-tuples in Âi (namely, the FS UK(Âi)).
The function r : U → R takes a FS as an input and returns a
real value that is proportional to the height or size of U .

Hence, we define the measure of agreement gAG for the
subset of FN-valued sources Âi as

gAG(Â0) = gAG(Â1) = 0, (27a)

gAG(Âi) =

i∑
K=2

r(UK(Âi))zK , i = [2 : n], (27b)

where UK(Âi) is defined at (28) and r is a function on the
FS UK . Note that ŪK for interval sources Āi is a (perhaps,
discontinuous) interval. However UK(Âi) is a FS, but not
necessarily a FN; hence, we do not use theˆnotation on UK
in (28). The measure gAG is then normalized to the FM g̃AG,
as in (10), such that g̃AG(Ĥ) = 1.
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UK(Âi) =

i−K+1⋃
k1=1

i−K+2⋃
k2=k1+1

. . .

i⋃
kK=kK−1+1

(
Ĥπ(k1) ∩ Ĥπ(k2) ∩ . . . ∩ Ĥπ(kK)

)
, K = [i], i = [n], (28)

We propose two functions for r that accomplish the seman-
tic definition of agreement. First, in the spirit of the interval
length calculation in gAG, we propose

rCARD(U) = |U | =
∫

0U

U(y)dy, (29a)

where U(y) is the membership of U at y and 0U is the support
of U (or the level-cut at α = 0). The drawback of rCARD is
that this calculation can be computationally expensive, both in
coding and calculation (however, we present a computationally
efficient solution in Section V-F). Hence, we also propose a
simpler method based on the maximum of U ,

rMAX(U) = max
0U
{U(y)}. (29b)

In the spirit of FS similarity, the quantity 1 − rMAX is
analogous to the “degree of separation” proposed in [39]. The
drawback of rMAX is that it does not consider the overall
shape of U . Figure 5 shows an example of this calculation for
two different scenarios of the combination of three FNs. The
example was designed to show that while rMAX is simpler
to compute, it may not capture the overall agreement between
two FNs. In this example, rMAX is equal in both scenarios.
But, clearly, the sets in Scenario 1 “agree more,” which is
captured by rCARD. This issue is analogous to the problem of
height versus centroid defuzzifiers in fuzzy control problems—
rCARD is accurate, while rMAX is efficient. In Section V-F,
we propose an efficient approximation to rCARD; hence, we
recommend this function and use rCARD exclusively in our
results.

B. Measure of generalized accord

The strength of the GenA measure is its generalization
as an aggregation of similarity functions; hence, the only
part of GenA that needs to be adapted to accommodate
any type of input is the similarity function s. There have
been many similarity functions proposed for fuzzy sets. A
good comprehensive review on this topic can be found in
[40]. However, most of the existing similarity functions are
for measuring the similarity of only two input sets and are
thus inappropriate for use with the proposed FMs, which
need to consider combinations of two or more. We propose
the following adaptations of set-theoretic similarity measures,
generalized for multiple FS inputs,

sJ(Ĥ) =
r
(⋂|Ĥ|

i=1 Ĥi

)
r
(⋃|Ĥ|

i=1 Ĥi

) ; (30a)

sD(Ĥ) =
|Ĥ| · r

(⋂|Ĥ|
i=1 Ĥi

)
∑|Ĥ|
i=1 r

(
Ĥi

) ; (30b)

where r is, again, a function on a FS returning a measure of
its size or height, |Ĥ| is the cardinality or number of FNs

rMAX(U2(A3))

rCARD(U2(A3)) = area of hatched region

0.6

(a) Scenario 1

rCARD(U2(A3)) = area of hatched region

rMAX(U2(A3))
0.6

(b) Scenario 2

Fig. 5. Two scenarios showing the resulting values of rCARD(U2(A3))
and rMAX(U2(A3)). Clearly, rMAX is equal for each scenario, while
rCARD(Scenario 1) > rCARD(Scenario 2).

in Ĥ , and Ĥ is some input set of FN evidence. Note that if
r is rCARD at (29a), then (30a) is analogous to Dubois and
Prade’s dissimilarity measure [18] and (30b) is equivalent to
an extended form of the Z-similarity proposed in [41].

The GenA FM for FN-valued inputs can be directly calcu-
lated by substituting a FN similarity function, such as those
at (30), into the formulation at (14), where the input to
the GenA measure is now the set of FNs Âi. Furthermore,
the same recursive method proposed for the interval-valued
GenA measure can be used for FN-valued inputs. As stated
in Remark 6, Theorem 2 also applies to the GenA measure
on FNs; viz., the GenA measure on FNs is monotonic, non-
decreasing, and gGenA(Ĥ) = 1.

C. Additive measure of agreement

Much like the extension of the GenA measure to FN-valued
inputs, the AA measure can be extended by using a FN-
appropriate similarity function, such as those at (30), and
substituting this directly into the AA measure definition at
(19).

D. Measure of specificity

The SP measure for FN-valued inputs is calculated in the
same spirit as the SP measure for intervals: the more specific
the FN evidence, the higher the weight of that evidence.
Hence, the SP measure for FN input Ĥ starts with the
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calculation of the inverse relative cardinality of each set in
the evidence,

δ(Ĥi) =
minĤj∈Ĥ{|Ĥj |}

|Ĥi|
, (31a)

where | · | indicates cardinality as in (29a). Then, the densities
and measure are calculated similarly as for the interval-valued
inputs,

g(Ĥi) =
δ(Ĥi)∑n
j=1 δ(Ĥj)

, (31b)

g(Âi) =

i∑
k=1

g(Ĥπ(k)), i = [n]. (31c)

Remark 10. If one is using only triangular FNs, then cardi-
nality is directly proportional to the support of the FN; hence,
(31a) can be written as

δ(
4
H) =

minĤj∈Ĥ{|
0
4
Hj |}

|0
4
H|

, (32)

where the cardinality is now just over the interval 0
4
H at the

support of
4
H , a distinct advantage of using triangular FNs.

Remark 11. If any Ĥi is a singleton FN, i.e., it has a
membership function

Ĥi(y) =

{
1 y = a,

0 else,
(33)

where a is a number, then δ(Ĥi) is undefined. For this case,
we set the value of δ(Ĥi) = 1 for all singleton evidence,
and 0 else. Thus, the Choquet FI reduces to the average of
the singleton evidence sets, ignoring all “uncertain” evidence
(i.e., those that are not singletons). Examples of this will be
shown in Section VI-B2.

E. Measure of uniqueness

Again, the beauty of the GenA and AA FMs is that they
are defined over a generalized similarity function; hence, they
are appropriate for any type of input for which a similarity
function can be appropriately designed. Because the FM of
uniqueness is simply defined by substituting the dissimilarity
function (1 − s) into the formulations of GenA or AA, the
FM of uniqueness for FN-valued inputs is simply calculated
the same as with the interval-valued inputs. Hence, GenA and
AA, and their UQ antitheses, can be easily generalized to any
type of evidence, assuming an appropriate similarity-function
can be proposed.

F. Computational solution

Computing the similarity function rCARD(U) can be com-
putationally expensive, especially if it is exactly calculated
as this involves a complicated geometrical solution. But an
efficient computational solution can be proposed in the spirit of
centroid defuzzification. However, by discretizing the support

of the overlap area U , we can easily and efficiently calculate
both rCARD(U) and rMAX(U). Consider the discretized
support of U , i.e., (y1, . . . , yns

)T , xi ∈ 0U . Then if we
assume that U = (u1, . . . ,uns

)T is the sampling of the fuzzy
set U , where ui = U(yi), then the cardinality and max in
(29a) and (29b), respectively, can be efficiently and accurately
approximated as

|U | ≈
∑
xi∈0U

ui∆; (34a)

max
x∈0U

{U(x)} ≈ max
xi∈0U

ui; (34b)

where ∆ is the sampling spacing, i.e., ∆ = x2−x1. This can
interpreted as the box-car integration of U at sampling spacing
∆. Note that in practice, one does not need to multiply by the
sampling spacing ∆ as it is unimportant in the calculations of
the FMs.

First, we discretize the support of Ĥ . For the examples
shown in this paper, we discretized the support at ns = 100
equally spaced points. Assume that Ĥj = (hj1, . . . ,hjns

)
is the discretized version of the FN Ĥj ∈ Ĥ . Hence, the
intersections and unions in (30) can be calculated as

n⋂
i=1

Ĥi ≈
(

n
min
i=1

hi1, . . . ,
n

min
i=1

hins

)
; (35a)

n⋃
i=1

Ĥi ≈
(

n
max
i=1

hi1, . . . ,
n

max
i=1

hins

)
; (35b)

where it is clear that we are using Zadeh’s definition of
intersection and union.

In practice, we accomplish the computations of (30) by first
discretizing Ĥ in ns equally spaced points over the support
of the union of all sets in Ĥ . We then use (35) and (34) to
efficiently calculate the appropriate contributions to the AG,
GenA, and AA measures (and their UQ antitheses). The SP
measure (for non-triangular FNs) is calculated in the same
spirit by using the discretized cardinality at (34a) to compute
δ(Ĥi) at (31a).

VI. RESULTS

We now present several experiments that show the behavior
of each measure when used with the FI. First, we will show re-
sults of our data-informed FMs for interval-valued data. Next,
we demonstrate our FMs for FN-valued data on both synthetic
and real data. We stress that in these examples, there are no
“right” answers, each of the FMs produce different results
by the way in which they weight different combinations of
sources. What we aim to do instead with these demonstrations
is provide a good look at how these FMs work and how they
produce the weight values when used to aggregate interval and
FN sources with the FI.

A. Interval data

In this experiment, we created four sets of synthetic interval
data. These data are shown as the blue bars in Fig. 6. We then
used each of the data-driven FMs, described in Section IV,
to compute the Choquet integral aggregation. The results are
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shown as the black bars in Fig. 6. Scenario 1, in view (a),
displays a case where there are three smaller (more certain)
intervals—sources 4, 5, and 6—that agree very well and then
three larger (less certain) intervals—sources 1, 2, and 3—that
agree “somewhat.” The results of the FI show that the AG
measure clearly prefers the three larger intervals, sources 1-
3, in the aggregation, while the AA and GenA measure put
more weight on the smaller intervals because they agree more
relative to their size. The UQ results show that the “unique”
intervals, sources 1 and 2, have more weight in the result.
The SP (specificity) measure places the most weight on the
smaller, more certain, sources (4–6) and clearly shows its
preference for these more certain sources. Finally, the equally-
weighted average is displayed for comparison. The last row
of the table is the result of a survey of 40 electrical and
computer engineering college students who were asked to draw
the interval that best represents the combination of all of the
sources. The max and min values for the interval end-points
are shown by the red bow-tie plots. The black bar indicates the
mean of their results. While this is not a good comparison for
theoretical work, such as this, it does show that the maximum
end point is placed at the top end of sources 4–6, while the
minimum end point is biased towards the middle of the scale.
Hence, the humans also show some preference in moving the
aggregated result toward the more certain, and “agreeing,”
sources 4–6.

Views (b–d) in Figure 6 display more synthetic examples
of the data-derived FMs used with the Choquet integral.
Interestingly, in Scenario 2 in view (b), the humans choose
a wide interval result, while all the data-derived FMs produce
very narrow results that look much like the inputs (at least
in certainty level). However, in the scenarios shown in views
(c,d), the data-derived measures agree well with the human-
determined aggregation.

B. Fuzzy number data

The Jaccard similarity measure at (30a) and rCARD at
(29a) were used in all these results. Triangular FNs are used
throughout this section for computational ease and are denoted
by (yl, yc, yr), i.e.,

4
Hi(y) =


0, y ≤ yl, y > yr,

(y − yl)/(yc − yl), yl < y ≤ yc,
(yr − y)/(yr − yc), yc < y ≤ yr.

1) Synthetic data examples: Figure 7 shows four examples
of using the Choquet integral to aggregate FNs with the FMs
described in Section V. Table II contains the parameters of
the triangular FNs used in these examples. The membership of
each FM with respect to the AVG, MIN, and MAX aggregation
operators is also shown in each view of Fig. 7.

Example 1 in view (a) has three narrow (more certain) inputs
with support between 4 and 5 and two more uncertain inputs
with support between 0 and 4. The AG-based Choquet integral
shows that the result tends towards the more uncertain inputs
that seemingly agree more, according to the AG measure.
However, the GenA and AA results show that they put more
weight on the 3 sources in the right side of the plot. These

TABLE II
PARAMETERS OF TRIANGULAR FNS USED AS INPUTS IN FIGURE 7

4
H = (yl, yc, yr)

Example 1 {(0, 1.8, 3), (1, 2.2, 4), (4, 4.5, 5), (4.1, 4.4, 4.5),
(4.2, 4.6, 4.6)}

Example 2 {(0, 4, 5), (0, 1, 2), (0, 1.1, 3), (4, 4.1, 5)}
Example 3 {(0, 0.5, 1), (1, 4, 5), (1, 4, 5)}
Example 4 {(0, 0.5, 1), (1, 4, 5), (1, 4, 5), (1, 4, 5), (1, 4, 5)}

sources agree more with respect to the Jaccard similarity
measure. The UQ measures of GenA and AA show that they
put more emphasis on the sources that are not as in agreement
(with respect to the Jaccard). Finally, the SP measure clearly
prefers the more certain sources at the right of the plot, which
is expected.

Example 2 in view (b) presents a synthetic data experiment
that further explores the notion of (relative) agreement between
sources. There are two sources on the left side of the plot: the
source with support between 0 and 2 (say Source 1) and the
source between 0 and 3 (say Source 2). Then, there is a source
with support between 0 and 5 (say Source 3). Finally, there
is a source at the right of the plot with a support between
4 and 5. Clearly, Sources 1 and 2 agree the most with each
and they also agree slightly with the uncertain source, Source
3. Source 4 has no overlap with Sources 1 and 2, but is
completely contained in Source 5. The AG, GenA, and AA
measures clearly put more weight on Sources 1 and 2. The
SP measure prefers Source 4 as it is the most certain, but also
puts some weight on Source 1 and 2. The comparison between
the UQ measures based on GenA and AA is interesting. The
UQ-GenA measure seems to put more emphasis on Source 4
(as it the output moves to the right). However, the UQ-AA
measure moves much more to the right than the UQ-GenA
measure. This is because it weights Source 4 heavily, as it is
the source that only agrees with one other FN.

Examples 3 and 4 explore how many sources that com-
pletely agree are combined with one source that is completely
disjoint from the others. View (c) shows the aggregation of
one unique source and two exactly equal sources (those with
support between 1 and 5). View (d) shows the aggregation
of the same unique source with four exactly equal sources.
Clearly, the AG, GenA, and AA measures recognize this
situation and return an output that is exactly equal to the
sources that agree for both Examples 3 and 4. However, the
UQ measures show interesting behavior. The UQ-AA measure
in both examples returns an equally weighted average between
the unique source and one copy of the agreeing sources. But
the UQ-GenA measure is confused by the many copies of the
agreeing sources. View (d) shows that the UQ-GenA source
tends toward the agreeing sources as the number of them
increase. This is counterintuitive to the notion of uniqueness.
Hence, we believe that the UQ-AA measure is much more
useful as it basically ignores the presence of multiple copies of
agreeing sources and instead considers them to be one unique
source.

2) Real data: For this demonstration, we use environmental
management data gathered by the Government of Western
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Src 1
Src 2
Src 3
Src 4
Src 5
Src 6

AG
GenA

UQGenA
AA

UQAA
SP

AVG
Human

FM µ(SAVG(g)) µ(SMIN (g)) µ(SMAX(g))
AG 0.51 0.87 0

GenA 0.93 0 0
UQGenA 0.96 0.30 0

AA 0.98 0 0.30
UQAA 1.0 0.18 0

SP 0.74 0 0.64

(a) Scenario 1

Src 1
Src 2
Src 3
Src 4
Src 5
Src 6

AG
GenA

UQGenA
AA

UQAA
SP

AVG
Human

FM µ(SAVG(g)) µ(SMIN (g)) µ(SMAX(g))
AG 0.95 0.35 0

GenA 0.88 0.58 0
UQGenA 0.97 0.26 0

AA 1.0 0.08 0.09
UQAA 1 0.08 0.08

SP 1.0 0.11 0.05

(b) Scenario 2

Src 1
Src 2
Src 3
Src 4
Src 5
Src 6
Src 7

AG
GenA

UQGenA
AA

UQAA
SP

AVG
Human

FM µ(SAVG(g)) µ(SMIN (g)) µ(SMAX(g))
AG 0.73 0.78 0

GenA 0.66 0.80 0
UQGenA 0.99 0.18 0

AA 0.98 0.28 0
UQAA 0.99 0 0.24

SP 0.98 0 0

(c) Scenario 3

Src 1
Src 2
Src 3
Src 4
Src 5
Src 6

AG
GenA

UQGenA
AA

UQAA
SP

AVG
Human

FM µ(SAVG(g)) µ(SMIN (g)) µ(SMAX(g))
AG 0.65 0.80 0

GenA 0.71 0.80 0
UQGenA 0.97 0.90 0

AA 1.0 0.04 0.12
UQAA 1.0 0.14 0.04

SP 0.83 0 0.58

(d) Scenario 4

Fig. 6. Results of fuzzy Choquet integral using proposed data-informed FMs. Human result is of a survey on 27 people—mean shown as thick black bar,
max and min values shown in red bow tie plot.

Australia Departments of Parks and Wildlife. Eight stake-
holder representatives responsible for making conservation
decisions were asked to rank nine categories in terms of their
value in making these decisions—the categories are adequate
resources, aesthetics, health (physical environment), health
(protection from other organisms), knowledge and education,
meaningful occupation, philisophical/spiritual, recreation, and
future options. Once they had ranked the categories, they were
then asked to add a “minimum/maximum” bound in terms of
how low/high they would go for the rank of each category (es-
sentially adding an uncertainty to their original ranking). These
were converted to triangular FNs as (min, rank,max). The
eight responses for two categories—resources and meaningful
occupation—are shown in Table III. As the table shows, some
stakeholders provided very certain responses, indicated by
singleton FNs. However, many of the stakeholders expressed
uncertainty in their original rankings, giving us responses with
which we could build triangular FNs.

The stakeholder responses are anonymized; hence, no in-
formation is known about the relative merit of each person’s
rankings. This is a perfect scenario for where our data-

TABLE III
FN VALUE RANKINGS GIVEN BY CONSERVATION STAKEHOLDERS

Category FN Value Rankings,
4
H = (yl, yc, yr)

resources (1, 1, 1), (4, 5, 5), (6, 6, 8), (5, 5, 5),
(7, 7, 7), (7, 9, 9), (1, 1, 3), (1, 3, 3)

meaningful
occupation

(8, 8, 8), (8, 9, 9), (7, 7, 8), (7, 9, 9),
(1, 1, 1), (4, 5, 5), (5, 6, 6), (6, 7, 8)

informed FMs can be used to assign weight to combinations
of sources in order to aggregate the rankings into a com-
posite rank for each category. Figure 8 shows the results of
using the Choquet FI to aggregate the stakeholder responses
with respect to the data-informed FMs. View (a) shows the
aggregation for the resources category and view (b), the
meaningful occupation category. The FN inputs in view (a)
span the entire spectrum of the rankings; however, two of
the responders agree fairly well that the category is highly
ranked (‘near 1’); hence, the AG, GenA, and AA FMs (all of
which place importance on agreement of some type) give a
composite result of a ranking ‘around 3.’ The UQ FMs cause
an aggregation of the individual unique responses and results
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(d) Example 4

Fig. 7. Synthetic data examples of aggregating FNs using the Choquet integral with data-derived FMs. Tables show the membership of each FM to each in
the three base aggregation operators.

in ranking of ‘around 4.’ In this real-world example, the UQ
aggregation could be thought of as a tool to remove the bias
caused by cliques in the data, i.e., groups of people that are
answering similarly because of surrounding peers. As Remark
11 states, if singleton inputs exist, then the SP FM prefers
them exclusively over the uncertain inputs; hence, the SP FM
for the resources category produces an average of the three
singleton responses—i.e., 1, 5, and, 7—giving a composite
rank of 4.33.

Figure 8(b) shows the Choquet FI aggregation of the mean-
ingful occupation FN ranks. As we can see in the FN inputs,
most stakeholders rank this category low (between 5 and 9)
and one response is at 1. Hence, we would intuit that the
composite aggregation would be a rank of ‘around 7.’ Indeed,
the AG, GenA, and AA FMs produce results that matches our
intuition. The UQ FMs reduce the effect of the “agreement”
at the low ranks; thus, the lone responder at 1 has more of an
effect on the composite ranking, as shown by the UQ results
of ‘around 6.’ Last, the SP FM is again dominated by the
presence of the singleton inputs, 1 and 8, producing a crisp
composite output of 4.5.

VII. CONCLUSIONS

The focus of this paper was on the aggregation of interval-
and fuzzy number-valued evidence using the fuzzy integral
with respect to a fuzzy measure. The challenge we addressed

is that of the formation of the fuzzy measure. Specifying
a fuzzy measure is a difficult task for some data sets, es-
pecially those where this is little to no information about
the individual sources, such as crowd-sourced data, battlefield
situational awareness data, or anonymized survey data. Hence,
we proposed six fuzzy measures that compute the lattice of the
fuzzy measure according to functions on the input data itself.
Table IV provides an overview of the proposed data-informed
measures. The AG, GenA, and AA fuzzy measures place value
on combinations of sources that agree with one another, while
the UQ fuzzy measures provide an antithesis to the GenA and
AA measures which allow one to only consider the uniquely-
valued sources (removing the synergy of redundant sources).
Lastly, the SP measure places importance on inputs that are
certain or specific in their response. Theoretical discussions on
these data-informed measures presented evidence against the
use of the AG and GenA measure, resulting in the proposal
of the AA measure as a solution to these problems.

Next, we extended the notion of these measures to the case
of fuzzy number-valued inputs and presented a computational
approach for efficiently computing the fuzzy integral with
respect to the data-informed measures. Two methods were
presented for representing agreement in combinations of fuzzy
number-valued sources—we recommend the cardinality-based
method, i.e., rCARD at (29a), which is grounded in the work
of Dubois and Prade’s dissimilarity measure [18] and Z-
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Fig. 8. Aggregation of stakeholders’ opinions on the value ranking of each category in making conservation decisions. FN rankings are aggregated using
the Choquet integral with data-derived FMs. Tables show the membership of each FM to each in the three base aggregation operators.

TABLE IV
OVERVIEW OF DATA-INFORMED FUZZY MEASURES

FM Description Comments
AG Provides higher weight on sets that have a larger intersection. Does not normalize the intersection of the combination by the

cardinality of the individuals; hence, more-uncertain sets could
“agree” less than more-certain sets but have a larger overall weight
in the aggregation. Suffers from asymmetry when negative-valued
integrands are considered.

GenA Provides higher weight on sets that have a larger similarity value;
i.e., size of the intersection with respect to their individual cardi-
nalities.

Suffers from asymmetry when negative-valued integrands are con-
sidered.

AA Provides higher weight on sets that have a larger similarity value. Fixes the asymmetry issue of AG and GenA.
UQ Provides equal weight to each unique set in the collection of

sources; i.e., it removes the effect that redundant sources are
represented more heavily in the aggregation.

There is a UQ measure for both the AA and GenA measures.

SP Provides a weight inversely proportional to the cardinality of each
input set.

Sets that are more certain are represented more heavily in the
aggregation.

similarity [41].
Demonstrations of the data-informed fuzzy measures pro-

vided an important view of how these measures cause different
behaviors in fuzzy integral aggregation, with several synthetic
examples shown as to reinforce the theoretical discussions
earlier in the article. Finally, a real-world data example was
shown which aggregated the value ranking of stakeholders’
opinions on how different categories affected their decisions.
Two specific categories were shown to showcase the data-
informed fuzzy measures with real data.

In the future we will present a more comprehensive article
on the results of the stakeholder opinion study, using our
data-informed fuzzy measures to produce composite ranks of
each of the nine available categories. We will also extend
our analysis to larger data sets, such as internet crowd-
sourced responses and social networking, as well as consider
other aggregation methods beyond the fuzzy integral that
can leverage the proposed data-informed fuzzy measures. In
summary, the proposed data-informed fuzzy measures pave the
way for an expanded use of the fuzzy integral to aggregate
sources of information for which no contextual knowledge
is known about the contributing sources. This paper has laid
the theoretical foundations and provided initial insights into
the behavior and properties of data-informed fuzzy measures,
which can be employed in combination with the fuzzy integral.
Based on the these insights, we have proposed guidelines on

the applicability of the given fuzzy measures and in the future
are looking forward to further explore their potential in real
world applications.
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