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Abstract—The aggregation of multiple information sources has
a long history and ranges from sensor fusion to the aggregation of
individual algorithm outputs and human knowledge. A popular
approach to achieve such aggregation is the fuzzy integral (FI)
which is defined with respect to a fuzzy measure (FM) (i.e. a
normal, monotone capacity). In practice, the discrete FI aggre-
gates information contributed by a discrete number of sources
through a weighted aggregation (post-sorting), where the weights
are captured by a FM that models the typically subjective ‘worth’
of subsets of the overall set of sources. While the combination
of FI and FM has been very successful, challenges remain
both in regards to the behavior of the resulting aggregation
operators—which for example do not produce symmetrically
mirrored outputs for symmetrically mirrored inputs—and also
in a manifest difference between the intuitive interpretation of
a stand-alone FM and its actual role and impact when used as
part of information fusion with a FI. This paper elucidates these
challenges and introduces a novel family of recursive average
(RAV) operators as an alternative to the FI in aggregation
with respect to a FM; focusing specifically on the arithmetic
recursive average. The RAV is designed to address the above
challenges, while also facilitating fine-grained analysis of the
resulting aggregation of different combinations of sources. We
provide the mathematical foundations of the RAV and include
initial experiments and comparisons to the FI for both numeric
and interval-valued data.

I. INTRODUCTION

The aggregation of multiple information sources has a long
history and ranges from sensor fusion to the aggregation of
individual algorithm outputs and human knowledge. A popular
approach to achieve such aggregation is the fuzzy integral
(FI) which is defined with respect to a fuzzy measure (FM)
(i.e. a normal, monotone capacity). In practice, the discrete
FI aggregates typically objective information contributed by
a discrete number of sources through a weighted aggregation
(post-sorting), where the weights are captured by a FM which
models the typically subjective worth of subsets of the overall
set of sources.

In many applications, the FI is used simply as a parametric
aggregation function. In this respect, the FM does not seman-
tically mean anything but is just used as a set of parameters
to be optimized. However, individually, the FM is viewed as
a hierarchical weight for a set of sources which does not only

capture the worth of each source, but also the worth of all
combinations of sources within the set (e.g., see Fig. 2).

This meaning of the FM is particularly relevant in cases
where the FM is specified externally–for example by human
experts, and, in cases where an attempt is made at a later stage
to interpret the actual values within the FM–for example to
develop a better understanding of the aggregation.

A strong source of motivation for this paper is that while
the semantic interpretation and explanation of the FM is highly
intuitive, current FI based data aggregation applications do not
follow this interpretation and do not use the FM to weight
all combinations of sources as would intuitively be expected.
For example, FI based aggregation of symmetrically mirrored
inputs does not result in symmetrically mirrored outputs - as
would intuitively be expected. This and similar aspects of FI
based data aggregation are discussed further in Section IV.

Importantly, this disconnect between semantic meaning and
actual fusion behavior of the FI creates three challenges:

1) External Specification - it prevents the a priori specifi-
cation of the FM based on external knowledge as an
approach to systematically fuse multi-source data. In
other words, approaches which generate the FM based
on its role of capturing the worth of sources and their
combinations do not produce expected results when said
FMs are then used in combination with the FI.

2) Validation - it prevents human interpretation and vali-
dation of a FM, thus affecting the capacity for trusting
the fused outputs post-aggregation. Essentially, a FM
which has been optimized in conjunction with a FI—
e.g., through an evolutionary algorithm [1]—may result
in optimal FI based fusion for the data considered, but
the actual nodes within the FM may not reflect the actual
worth of the specific combinations of sources.

3) Knowledge generation - this is directly related to the
Validation challenge. By not maintaining the semantics
of the FM, optimized FMs lose the capacity to deliver
knowledge on the worths of combinations of sources. In
other words, the optimization process does not generate
externally useful knowledge on the worth of combina-
tions of sources; we cannot ask the question “What is
the worth of the combination of sources A, B, and C?”.



Beyond the challenges above, traditional FI based data
aggregation is designed to generate one single output. While
highly efficient, this approach does not facilitate more fine-
grained aggregation where, for example, the aggregated result
of each possible source-combination is incrementally known
and a decision can be made on whether the fusion should
proceed. For example, it may not be meaningful to aggregate
two sources providing opposite evidence or overly redundant
sources.

In order to address the above challenges, this paper presents
a new family of Recursive Average (RAV) operators as a
novel alternative to the FI, thus providing a new pathway
for employing the FM in a data-aggregation context. First,
Section II provides key background material on the FM and
FI, then Section III introduces the RAV. Section IV highlights
the behaviour of the resulting FM-RAV aggregation approach
in contrast to traditional FM-FI based aggregation, focusing
specifically on the arithmetic RAV. Section V discusses the
computational complexity of the RAV, while Section VI pro-
vides a brief discussion, conclusions, and further work.

II. BACKGROUND

A. Fuzzy Measure
1) Overview: A FM captures the possibly subjective worth

of every subset in the power set of information sources. In
the context of multi-source data aggregation, a FM can be
interpreted as a complex weighting structure (a lattice) which
assigns weights to sources in a similar fashion to the weights
in a weighted average; however, FMs enable the capture of
not only the weights of individual sources—referred to as
densities—but also the weights of all possible combinations of
sub-sources. This lattice of weights is shown for an example
FM g with three sources in Fig. 2.

Formally, let X = {x1, . . . , xn} be a non-empty finite set
of information sources and g : 2X → [0, 1] be a FM with the
following properties [2]:
P1) g(∅) = 0, g(X) = 1;
P2) If A ⊆ B ⊆ X then g(A) ≤ g(B) ≤ 1 (g is monotonic

and non-decreasing).
Note that there is a third property for continuous FMs which

is not applicable to discrete FMs such as those in this paper.
The measure g is the confidence or worth of each subset of X;
hence, P1 tells us that the worth of no sources, or the empty
set ∅, is 0 and the worth of all sources, or the universal set X ,
is 1. P2 tells us that if A is a subset of B, then B is worth at
least as much as A. In other words, the monotonicity constraint
of P2 implies the assumption that more sources cannot result
in a decrease in worth.

While the majority of applications of the FM is in data
aggregation, where, in conjunction with a FI, the FM is used
effectively as a complex, constrained parameter set (which
can be optimized), a clear attraction of the FM per se is its
lattice structure which enables it to capture the intuitive worths
of different combinations of input sources. The latter in turn
makes the FM suitable for expert-led specification (see below),
but also for introspection and validation.

2) Constructing Fuzzy Measures: A major challenge facing
the application of FMs is the population of the actual FM
lattice (see example in Fig. 2 for three sources), i.e., how
to determine the values of the variables in the FM. Several
approaches exist, including the following.

• Specification by experts. While for a small number of
sources, the specification of the FM by experts is vi-
able, manual specification for larger numbers of sources
rapidly becomes unfeasible. For example, there are al-
ready 31 non-empty subsets of a set of 5 sources.

• Algorithmic specification. Examples include the Sugeno λ
FM [3], the decomposable FM [4], and the more recently
introduced data-driven FMs [5, 6]. It is worth noting that
some of these algorithms, including the Sugeno λ FM and
the decomposable FM, derive the entire FM lattice from
the densities alone, with the sole additional constraint
being the mathematical correctness of the FM in respect
to P1 and P2 above, while others derive the entire FM
lattice directly based on some criteria such as the level
of agreement over given subsets of sources.

• Specification through optimization. Several techniques,
including evolutionary algorithms [1] and quadratic pro-
gramming [7] have been employed to generate FMs while
relying on training data and a criterion such as the quality
of the fused output. Here, it is important to note that these
approaches do not attempt to preserve semantic meaning
of the FM, but rather treat it as a set of free weights which
are optimized to deliver minimum output error with the
specific FI employed.

• Combinations of the above. While not a main focus for
current application or research, the above approaches can
of course be combined. For example, the worth of a
number of subsets is known by experts, while the rest
is learned from data (e.g., [8])

B. Fuzzy Integral

There are many types of the FI; see [2] for a detailed
discussion. FIs are mostly used for evidence fusion [2, 9–11].
They combine sources of information by accounting for both
the support of the question (the evidence h) and the expected
worth of each subset of sources (as supplied by a FM g).
Here, we focus on the discrete Sugeno (SFI) and Choquet
(CFI) FIs, proposed by Murofushi and Sugeno [12, 13]. Let
h : X → [0,∞) be a real-valued function that represents the
evidence or support of a particular hypothesis.1 The discrete
SFI and CFI are defined respectively as:∫
SFI

h ◦ g = SFIg(h) =

n∨
i=1

(
h({xπ(i)}) ∧ g(Ai)

)
, (1a)

∫
CFI

h ◦ g = CFIg(h) =

n∑
i=1

h({xπ(i)}) [g(Ai)− g(Ai−1)] ,

(1b)

1Generally, in data fusion, it is convenient to have h : X → [0, 1], where
each source is normalized to the unit-interval. This is also the appropriate
space of h for use with the Sugeno FI because, by definition, g ∈ [0, 1].



where π is a permutation of X , such that h({xπ(1)}) ≥
h({xπ(2)}) ≥ . . . ≥ h({xπ(n)}), Ai = {xπ(1), . . . , xπ(i)},
and g(A0) = 0 [3, 14]. The max and min definition of the
Sugeno FI has been extended to other t-conorms and t-norms.
Detailed treatments of the properties of FIs can be found in
[3, 14, 15].

In some cases, the evidence h cannot, or should not, be
represented simply by numbers; h would be better represented
as an interval-valued or fuzzy number-valued function. An
example is the survey question, “How many bottles of wine
should I purchase for the reception?” Many people would
answer with an interval, e.g., “between 20 and 30,” or a fuzzy
number, e.g., “about 25.” Such extensions of both the fuzzy
Sugeno and Choquet FIs have been proposed for both interval-
valued and also fuzzy number-valued integrands [3, 16–19].

III. THE RECURSIVE AVERAGE

While the FI provides a powerful and highly successful
means of fusing information, several challenges remain—see
Sections I and IV. In this section we introduce the family of
RAVs—i.e., the recursive weighted power mean—over a set
of sources S, defined as follows.

Definition 1. Recursive Weighted Power Mean

RAVp(S) =


h(S), if |S| = 1,(∑

g(Bj) RAVp(Bj)
p∑

g(Bj)

)1/p

, otherwise,
(2)

where |p| > 0, Bj = S\xj , xj ∈ S, and g is a FM where at
most one of the densities is zero.

Note that for specific values of p, the RAV follows the
weighted power mean and adopts well known average be-
haviors, such as the harmonic average (p = −1), the arith-
metic average (p = 1), the quadratic average (p = 2), etc.
For p = −∞, the RAV approaches the minimum, and for
p = +∞, the maximum operator; while for the case where
p = 0, the RAV adopts the geometric mean:

RAV0(S) =

h(S), if |S| = 1,(∏
RAV0(Bj)

g(Bj)
)1/∑ g(Bj)

, otherwise.
(3)

Thus, ∀p, the RAV for a set of sources is recursively defined
as the weighted average of the RAVs of its sub-sources, where
the weight at each node is captured by a FM. Note that for
conciseness, this paper focuses solely on the instance of the
RAV where p = 1, i.e., the arithmetic RAV. We will further
explore the other forms of the RAV in a future publication.
For simplicity, we will refer to the arithmetic RAV as RAV
throughout this paper.

Figure 1 illustrates the RAV for three sources, highlighting
its recursive nature (from top to bottom). Note that the RAV
of singletons is the evidence of the given singleton source.

Remark 1. The RAV enables the fusion of evidence from
multiple sources in conjunction with a FM, similar to the
FI. That is, the RAV also accounts for both the support of

the question—the evidence h—and the expected worth of
each subset of sources as supplied by a FM g. However,
the output of the RAV, unlike for the FI, is not a single
output; it is a lattice which is identical in structure to that
of the FM g, reflecting the output of the RAV for all possible
combinations of sources, including the overall output over all
sources: RAV(X).

Proposition 1. The RAV is not monotonic non-decreasing.

While the output of the RAV adopts the lattice structure of
the original FM, it itself is not a FM as it is not monotonically
non-decreasing, i.e., even if it was normalized, it would not
satisfy property P2 of a FM as described in Section II-A.

Proof. Let X = {x1, x2}, with evidence h({x1}) = 0.6
and h({x2}) = 0.1, and worth of g({x1}) = 0.1 and
g({x2}) = 0.9. We have RAV(x1) = 0.6, RAV(x2) = 0.1,
and RAV(X) = (0.1 ∗ 0.6 + 0.9 ∗ 0.1)/(0.1 + 0.9) = 0.15.
Hence, RAV(x1) > RAV(X).

Proposition 2. The output of RAV is bounded by
min(h(X)) ≤ RAV(X) ≤ max(h(X)).

Proof. The proof is trivial as the RAV is a recursive series of
arithmetic averages, each bounded by its smallest and largest
input. It is also easily extended to the family RAVp which
approaches a min and max operator as p approaches −∞ and
+∞ respectively.

Example 1. Consider a set of three sources X = {x1, x2,
x3}, and a FM g capturing the worth of each source and
their combinations. The RAV over all sources is computed
as follows.

RAV(X) = (g({x1, x2}) RAV({x1, x2})
+ g({x1, x3}) RAV({x1, x3})
+ g({x2, x3}) RAV({x2, x3}))
/ (g({x1, x2}) + g({x1, x3}) + g({x2, x3})) ,

(4)
where

RAV({x1, x2}) =
g({x1})RAV({x1}) + g({x2})RAV({x2})

gAR({x1}) + RAV({x2})
,

RAV({x1, x3}) =
g({x1})RAV({x1}) + g({x3})RAV({x3})

gAR({x1}) + RAV({x3})
,

RAV({x2, x3}) =
g({x2})RAV({x2}) + g({x3})RAV({x3})

gAR({x2}) + RAV({x3})
,

(5)
and RAV({x1}) = h({x1}), RAV({x2}) = h({x2}), RAV({x3}) =
h({x3}).

While the RAV does not require a reordering of sources
as the FI does, its recursive nature makes it computationally
expensive in comparison to the SFI and CFI. We review its
computational complexity in detail in Section V. We now
proceed by introducing a number of synthetic examples to
illustrate the behavior of the RAV, in particular in contrast to
the CFI and SFI when used in a data fusion context.



Fig. 1: Arithmetic recursive average for three sources. Note how a FM g (such as the example in Fig. 2) is used as weights.

Fig. 2: The FM g1.

IV. EXPERIMENTS AND ILLUSTRATIVE EXAMPLES

This section provides a series of data fusion examples which
serve both to illustrate challenges in FI-based fusion (see
Section I) and demonstrate the behavior of the RAV in respect
to the SFI and CFI.

A. Examples for Synthetic Numeric Data

In order to illustrate the properties of the RAV, while also
underpinning the motivation for its design, we provide a series
of numeric examples, comparing its application and output to
that of the SFI and CFI, where applicable.

1) Mirrored inputs: Consider three sources X =
{x1, x2, x3} and an associated FM g1 as depicted in Fig. 2.
Furthermore, consider the following two sets of evidence
provided by each of the sources: Ha = {ha({x1}) =
0.1, ha({x2}) = 0.3, ha({x3}) = 0.35} and Hb =
{hb({x1}) = 0.9, hb({x2}) = 0.7, hb({x3}) = 0.65}. Note
that the evidence in Hb is a mirror image of that in Ha, viz.,
hb({x1}) = 1− ha({x1}). Thus, it is intuitive to expect that
the fused outcome across all three sources is also mirrored in
relation to the different sets of evidence, i.e. to expect that
SFIg1(Hb) = 1− SFIg1(Ha) and the same for the CFI and
RAV. The numeric results for fusing the evidence sets Ha and
Hb is provided for in Table I for the SFI, the CFI, and the
RAV.

Considering Table I, it is clear that the SFI and CFI do
not produce outputs that are mirror images, i.e. SFIg1(Hb) 6=
1 − SFIg1(Ha) and CFIg1(Hb) 6= 1 − CFIg1(Ha). The
reason for this non-intuitive result is the way that both FIs
focus on the sources providing the largest evidence, as detailed
in Section II-B. Specifically, the ordering for evidence set Ha

will result in the permutation: π(1) = 3, π(2) = 2, π(3) = 1,
i.e. the shaded parts of the FM g1 in Fig. 2 are used. However,
for the evidence set Hb, the permutation will be π(1) = 1,

TABLE I: Numeric results (in respect to FM g1, see Fig. 2)

SFI CFI RAV
Ha 0.35 0.245 0.219
Hb 0.85 0.865 0.781
Hc 0.9 0.9 0.401

π(2) = 2, π(3) = 3, resulting in the patterned parts of the FM
g1 in Fig. 2 being used. The RAV however, uses the complete
lattice of the FM in both cases, thus returning the intuitive,
mirrored results, i.e. RAVg1(Hb) = 1−RAVg1(Ha).

2) Exploitation of the complete FM: A noteworthy aspect
of the example in Section IV-A1 is that for both the SFI and
CFI only a part of the FM is used during the fusion step. While
this makes them highly efficient at combining the complex
worth encoded in the FM with the set of evidence, it also
leads to two potential pitfalls.

First, in an optimization context where the FM is opti-
mized/learned from data [1, 20], this may lead to certain parts
of the FM not being optimized if training data does not result
in all permutations of the FM being used—i.e., ‘visited’ during
training.

Second, the resulting fusion may not follow intuition. That
is, while the fusion based on the FI and a given FM is
expected to provide a fused result that considers the worth
of all sources and their combinations; in effect, this is not the
case. As an example, changing the worth of source x2 to 0,
i.e., g1({x2}) = 0 in the example in Section IV-A1 does not
affect the final output of the SFI and CFI. For comparison, the
results of the RAV are changed to RAVg1(Ha) = 0.191 and
RAVg1(Hb) = 0.809.

3) Intuitive source selection: Consider three sources X =
{x1, x2, x3} and an associated FM g2. The worths of all com-
binations of sources within the FM are 1, except the worths of
the singletons which are g2({x1}) = 0.99, g2({x2}) = 0.99,
and g2({x3}) = 1.0. In other words, the FM expresses that
all sources are of very high worth, with sources g2({x1})
and g2({x2}) fractionally lower than g2({x3}). Consider the
following evidence set Hc provided by the sources: Hc =
{hc({x1}) = 0.1, hc({x2}) = 0.2, hc({x3}) = 0.9}. The
results for fusing the evidence Hc in respect to the FM g2
using the SFI, CFI, and RAV are given in Table I.

The results in Table I for both the SFI and CFI show how
both of these fusion operators are swayed severely by a very



TABLE II: Interval results (in respect to FM g1, see Fig. 2)

SFI CFI RAV
Ha [0.3,0.4] [0.195,0.295] [0.169,0.269]
Hb [0.85,0.85] [0.815,0.915] [0.731,0.831]

(a) Standard interval inputs (evidence set Ha), and fused outputs

(b) Mirrorred interval inputs (evidence set Hb), and fused outputs

Fig. 3: Synthetic data example for mirroring interval inputs.

small difference in worth, exposing an instability in both FIs
in relation to small variations within the FM and resulting
in a potentially non-intuitive result. The RAV result follows
intuition, i.e. since all sources are essentially equally worthy,
the outcome should be very near to the average of the three
sources.

B. Examples for Synthetic Interval-Valued Data

As the RAV is an arithmetic operator, its extension from nu-
meric to interval-valued data is straightforward by employing
interval arithmetic. Similarly, it can be extended for application
to fuzzy-number valued data by using an α-cut decomposition
of fuzzy numbers. Because of space constraints, here, we only
provide examples for interval-valued evidence and numeric
worth, leaving further detail to future publications.

As in Section IV-A1, consider three sources X =
{x1, x2, x3} and the FM g1 as depicted in Fig. 2. For conti-
nuity, we generate interval-valued evidence by perturbing the
evidence from Section IV-A1 with ±0.5. Thus, consider the
following two sets of interval-valued evidence provided by
each source: Ha = {ha({x1}) = [0.05, 0.15], ha({x2}) =
[0.25, 0.35], ha({x3}) = [0.3, 0.4]} and Hb = {hb({x1}) =
[0.85, 0.95], hb({x2}) = [0.65, 0.75], hb({x3}) = [0.6, 0.7]}.
Note that the evidence in Hb is still a mirror image of that in
Ha. The results of the fusion for the SFI, CFI, and the RAV
are provided numerically in Table II and visualized in Fig. 3.

As for the numeric case in Section IV-A1, the interval-
valued outputs in Table II and more visually, Fig. 3 highlight
that for the FIs, the outputs for symmetrically mirrored in-
puts are not symmetrically mirrored themselves as would be
intuitive. The outputs for the RAV are however symmetric, as
shown for the numeric case in Section IV-A1.

C. Real-world data examples

As laid out in Section I, the motivation for the introduction
of the RAV is largely to provide useful and intuitive fusion
while leveraging the potential of the FM. Thus, we would
ideally like to be able to take a FM which encapsulates external
knowledge on a problem—e.g., the worth of combinations of
different experts—to fuse evidence arising from those experts.
In the current literature, it is challenging to find examples
of externally specified FMs. Most effort has been channeled
towards learning and optimizing FMs in respect to a FI, which
effectively means that the FM is tuned to result in ’optimal’
fusion for the given FI, rather than providing an independently
’optimal’ source of information.

A key interdisciplinary area of recent work where externally
specified FMs have been used is the estimation of age-at-death
from skeletal remains via applying multiple aging techniques
to different parts of the human skeleton [9]. The confidences
in the different techniques are subsequently captured as the
densities of a FM, while the rest of the FM is completed using
the Sugeno λ-FM. The Sugeno λ-FM does not in fact add
external information to the FM, but rather completes the FM’s
lattice in a mathematically correct form, allowing application
of FIs for fusion. However, as the resulting FM has been
externally specified (i.e. not optimized in respect to a FI), it
provides a good basis for demonstration of the RAV on real-
world data, and its comparison to the FI.

We replicate the results for two sets of skeletal remains as
shown in [9], providing the aggregation outputs for the SFI,
CFI and the RAV, as well as the chronological (ground truth)
age in Fig. 4. For details on the raw data, please consult [9].

From the plots, it is clear that—as expected for identical
inputs—all data fusion operators provide comparable results.
It is however interesting to note how the RAV produces
higher confidence around the correct age in Fig. 4a and lower
confidence—where the age estimate is incorrect—in Fig. 4b.
This behavior of the RAV would be highly valuable in the
generation of meaningful decision support outputs (e.g.: “What
was the age of this person at death and how sure are we about
it?”) and we will explore it further in future work.

Finally, before concluding this paper, we briefly review the
computational complexity of the RAV in the next section.

V. COMPUTATIONAL COMPLEXITY

The computational complexity CRAV of the arithmetic RAV
operator can be captured at the level of the mathematical
operations required for its computation for a given number
of sources,

CRAV =

(
n

k

)
(((k − 1) ∗ 2 ∗ x) + (k ∗ y) + z), (6)

where n is the number of sources, k ∈ {2, . . . , n}, x is the
number of additions, y is the number of product operations,
and z is the number of divisions. Using standard complexity
notation, CRAV can be captured as O(n2 log n), compared
to the O(n log n) complexity of the FI. The complexity of
the former is driven by its recursive nature, resulting in the



(a) Skeleton 208 (Fig. 3 in [9])

(b) Skeleton 779R (Fig. 6 in [9])

Fig. 4: Comparative fusion for anthropological data from [9].

factorial term in (6), while that of the latter is driven by the
sorting operation.

Theoretically, the RAV is more computationally expensive
than the FI, but comparing the complexity of the RAV op-
erator to that of the CFI or SFI in practice is non-trivial.
Clearly, the computation of the RAV is in principle more
computationally expensive, requiring substantially more, and
more computationally complex, (i.e. division rather than just
sum and product) arithmetic operations. However, we note that
the RAV 1) provides substantially more detailed output than
the FI, resulting in a lattice of sub-aggregation results at each
node, rather than just an overall aggregation results as for the
FI, and 2) enables the partial re-computation of the lattice
in cases where only evidence from a subset of sources has
changed.

VI. DISCUSSION AND CONCLUSIONS

In this paper we proposed a new family of recursive average
(RAV) operators (i.e. the recursive weighted power mean),
expanding in particular on the arithmetic RAV. The motivation
for the new operator family is the desire to provide an intuitive
path to aggregating data (evidence) in conjunction with the
powerful structure of a fuzzy measure. We showed how the
proposed RAV avoids potential challenges, such as the non-
symmetry of outputs for symmetrically flipped inputs that can
occur when employing a FI in conjunction with a FM, and
thus how the arithmetic RAV can provide a useful alternative
to FIs. We provided both synthetic and real world data fusion

examples for numeric and interval data, comparing the fusion
performance of the Sugeno and Choquet FIs with that of
the arithmetic RAV. Finally, we briefly reviewed the RAV’s
computational complexity.

In future work, we are looking to further explore the wider
family of RAVs while also focusing on the knowledge that can
be extracted from a FM when it has been learned in respect
to a RAV.
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