2,322 research outputs found

    Identification of prognostic inflammatory factors in colorectal liver metastases

    Get PDF
    BACKGROUND: The modified Glasgow Prognostic Score (mGPS) has been reported to be an important prognostic indicator in a number of tumor types, including colorectal cancer (CRC). The features of the inflammatory state thought to accompany elevated C-reactive protein (CRP), a key feature of mGPS, were characterized in patients with colorectal liver metastases. Additional inflammatory mediators that contribute to prognosis were explored. METHODS: In sera from 69 patients with colorectal liver metastases, a panel of 42 inflammatory mediators were quantified as a function of CRP levels, and as a function of disease-free survival. Multivariate statistical methods were used to determine association of each mediator with elevated CRP and truncated disease-free survival. RESULTS: Elevated CRP was confirmed to be a strong predictor of survival (HR 4.00, p = 0.001) and recurrence (HR 3.30, p = 0.002). The inflammatory state associated with elevated CRP was comprised of raised IL-1ÎČ, IL-6, IL-12 and IL-15. In addition, elevated IL-8 and PDGF-AB/BB and decreased eotaxin and IP-10 were associated with worse disease-free and overall survival. CONCLUSIONS: Elevated CRP is associated with a proinflammatory state. The inflammatory state is an important prognostic indicator in CRC liver metastases. The individual contributions of tumor biology and the host to this inflammatory response will require further investigation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2407-14-542) contains supplementary material, which is available to authorized users

    Measurement of the Electrical Resistance of n-Type Si Microwire/p-Type Conducting Polymer Junctions for Use in Artificial Photosynthesis

    Get PDF
    The junction between n-type silicon microwires and p-type conducting polymer PEDOT:PSS (poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)) was investigated using a soft contact method. Dopant levels within the microwires were varied during growth to give a highly-doped region for improved contact and a low-doped region for light absorption. The low-doped region of the microwires had a dopant density of 5 X 10(17) cm(-3) while the highly-doped region had an increased dopant density of 5 X 10(18) cm(-3) over similar to 20 mu m. Uniform, highly-doped microwires, with a dopant density of 4 X 10(19) cm(3), were used as a comparison. Regions of highly-doped n-type Si microwires (N-D = 5 X 10(18) cm(-3) and 4 X 10(19) cm(-3)) contacted by PEDOT:PSS showed a significantly lower junction resistance compared to the low-doped (3 X 10(17) cm(-3)) regions of the microwire. Junctions incorporating the metal catalyst used during growth were also investigated. Microwires with copper at the interface had similar currentvoltage characteristics to those observed for the highly-doped microwire/conducting polymer junction; however, junctions that incorporated gold exhibited significantly lower resistances, decreasing the iR contribution of the junction by an order of magnitude with respect to the total voltage drop in the entire structure

    Electrical Characteristics of the Junction between PEDOT:PSS and Thiophene-Functionalized Silicon Microwires

    Get PDF
    Thiophene moieties have been attached to Si microwires (Si MWs) by a two-step chlorination/alkylation reaction method. X-ray photoelectron spectroscopy indicated that saturation of the surface occurred after 30 min of reaction time. Electrical measurements using a standard probe station indicated that the junction between individual thiophene-functionalized Si MWs and the conducting polymer poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) became more ohmic as more thiophene was added to the MW surface. Under a light-limited current of 20 nA, representative of operation of Si MWs under 1 Sun illumination conditions, the iR loss of thiophene-n-Si MW/PEDOT-PSS contacts was 20 mV, representing an order of magnitude reduction compared with PEDOT-PSS junctions formed with methyl terminated n-Si MWs. Such iR losses are much less than typical catalytic overpotentials for fuel formation, and hence the thiophene-functionalized Si MW contacts will not limit the performance of a Si MW array-based solar fuels device under 1 Sun illumination

    Electrical Characterization of Si Microwires and of Si Microwire/Conducting Polymer Composite Junctions

    Get PDF
    The electrical (DC) behavior of single silicon microwires has been determined by the use of tungsten probes to make ohmic contact to the silicon microwires. The basic electrical properties of the microwires, such as their DC resistivity and the doping distribution along the length of the microwires, were investigated using this approach. The technique was also used to characterize the junction between silicon microwires and conducting polymers to assess the suitability of such contacts for use in a proposed artificial photosynthesis system

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore