42 research outputs found

    Results of combined treatment of anaplastic thyroid carcinoma (ATC)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anaplastic thyroid carcinoma (ATC) is among the most aggressive human malignancies. It is associated with a high rate of local recurrence and with poor prognosis.</p> <p>Methods</p> <p>We retrospectively reviewed 44 consecutive patients treated between 1996 and 2010 at Leon Berard Cancer Centre, Lyon, France. The combined treatment strategy derived from the one developed at the Institut Gustave Roussy included total thyroidectomy and cervical lymph-node dissection, when feasible, combined with 2 cycles of doxorubicin (60 mg/m2) and cisplatin (100 mg/m2) Q3W, hyperfractionated (1.2 Gy twice daily) radiation to the neck and upper mediastinum (46-50 Gy), and then four cycles of doxorubicin-cisplatin.</p> <p>Results</p> <p>Thirty-five patients received the three-phase combined treatment. Complete response after treatment was achieved in 14/44 patients (31.8%). Eight patients had a partial response (18.2%). Twenty-two (50%) had progressive disease. All patients with metastases at diagnosis died shortly afterwards. Thirteen patients are still alive. The median survival of the entire population was 8 months.</p> <p>Conclusion</p> <p>Despite the ultimately dismal prognosis of ATC, multimodality treatment significantly improves local control and appears to afford long-term survival in some patients. There is active ongoing research, and results obtained with new targeted systemic treatment appear encouraging.</p

    A Tuned-RF Duty-Cycled Wake-Up Receiver with −90 dBm Sensitivity

    No full text
    A novel wake-up receiver for wireless sensor networks is introduced. It operates with a modified medium access protocol (MAC), allowing low-energy consumption and practical latency. The ultra-low-power wake-up receiver operates with enhanced duty-cycled listening. The analysis of energy models of the duty-cycle-based communication is presented. All the WuRx blocks are studied to obey the duty-cycle operation. For a mean interval time for the data exchange cycle between a transmitter and a receiver over 1.7 s and a 64-bit wake-up packet detection latency of 32 ms, the average power consumption of the wake-up receiver (WuRx) reaches down to 3 μ W . It also features scalable addressing of more than 512 bit at a data rate of 128 k bit / s −1. At a wake-up packet error rate of 10 − 2 , the detection sensitivity reaches a minimum of − 90 dBm . The combination of the MAC protocol and the WuRx eases the adoption of different kinds of wireless sensor networks. In low traffic communication, the WuRx dramatically saves more energy than that of a network that is implementing conventional duty-cycling. In this work, a prototype was realized to evaluate the intended performance

    Accurate Einstein coefficients for electric dipole transitions in the first negative band of N2+

    No full text
    International audienceContext. The N2+ fluorescence spectrum of comet C/2016 R2 is modelled in a companion paper. That work relies on accurate Einstein coefficients for electric dipole transitions between the B2∑u+ and X2∑g+ electronic states of N2+.Aims. These coefficients are provided in the present paper.Methods. The potential energy curves and transition dipole moments were computed at a high level of ab initio theory and include relativistic corrections. Rovibrational wavefunctions were then obtained without assuming separability of vibrational and rotational motions.Results. Vibrationally and rotationally resolved Einstein coefficients are presented in a convenient three-parameter functional form for three isotopologues. A possible explanation is given for the large variation in the experimental radiative lifetimes

    Potential of impedance spectroscopy for real-time assessing of food quality

    No full text

    Analytical and Experimental Performance Analysis of Enhanced Wake-Up Receivers Based on Low-Power Base-Band Amplifiers

    Get PDF
    With the introduction of Internet of Things (IoT) technology in several sectors, wireless, reliable, and energy-saving communication in distributed sensor networks are more important than ever. Thereby, wake-up technologies are becoming increasingly important as they significantly contribute to reducing the energy consumption of wireless sensor nodes. In an indoor environment, the use of wireless sensors, in general, is more challenging due to signal fading and reflections and needs, therefore, to be critically investigated. This paper discusses the performance analysis of wakeup receiver (WuRx) architectures based on two low frequency (LF) amplifier approaches with regard to sensitivity, power consumption, and package error rate (PER). Factors that affect systems were compared and analyzed by analytical modeling, simulation results, and experimental studies with both architectures. The developedWuRx operates in the 868MHz band using on-off-keying (OOK) signals while supporting address detection to wake up only the targeted network node. By using an indoor setup, the signal strength and PER of received signal strength indicator (RSSI) in different rooms and distances were determined to build a wireless sensor network. The results show a wake-up packets (WuPts) detection probability of about 90% for an interior distance of up to 34 m
    corecore