212 research outputs found

    The impact of interspecific hybridization on fungal plant pathogens: a case study onthe emerging pathogen Verticillium longisporum

    Get PDF
    Species are biological entities that generally do not cross with one another. However, in rare occasions it occurs that a viable hybrid arises from a cross between two species. Such hybrids may contain particular properties different from their parents and may be more successful in particular ecosystems. The fungal genus Verticillium contains important haploid plant pathogens that cause significant yield losses on a wide range of crops. Crosses between two Verticillium species resulted into a novel hybrid pathogen of oilseed rape, Verticillium longisporum. Around ten years ago, Verticillium longisporum was observed for the first time in the United Kingdom and is currently widespread in this country. To assess the threat this pathogen poses on UK oilseed rape production, we characterized the UK Verticillium longisporum population and tested the impact of this disease on several oilseed rape cultivars. Furthermore, we studied the consequences of hybridization on genome and gene evolution, showing how novel traits may evolve in hybrid pathogens.</p

    Influence of CH4/H-2 reactive ion etching on the deep levels of Si-doped AlxGa1-xAs (x=0.25)

    Get PDF
    We study the passivation and recovery of shallow and deep levels in Si-doped AlGaAs exposed to CH4/H-2 and H-2 reactive ion etching (RIE). The carrier concentration depth profile is determined by capacitance-voltage measurements. The activation energy to recover the silicon donors is found to be 1.1 eV for samples exposed to CH4/H-2 RIE and 1.3 eV for samples exposed to H-2 RIE. We study the behavior of DX centers in Si-doped AlGaAs layers after RIE exposure and subsequent thermal annealing by using deep level transient spectroscopy. For CH4/H-2 RIE a new emission is detected at the high temperature side. We identify this emission as the DX3 center, which is assigned to a DX center with three aluminum atoms surrounding the Si donor. This DX center is only detected on the samples exposed to CH4/H-2 RIE. We explain the formation of this deep level to the highly selective removal of Ga atoms in favor of Al atoms. Consequently Al-rich regions are created near the surface. (C) 1996 American Vacuum Society.1431773177

    Heptametallic, Octupolar Nonlinear Optical Chromophores with Six Ferrocenyl Substituents

    Get PDF
    New complexes with six ferrocenyl (Fc) groups connected to ZnII or Cd^(II) tris(2,2′-bipyridyl) cores are described. A thorough characterisation of their BPh_(4)− salts includes two single-crystal X-ray structures, highly unusual for such species with multiple, extended substituents. Intense, visible d(Fe^(II))→π* metal-to-ligand charge-transfer (MLCT) bands accompany the π→π* intraligand charge-transfer absorptions in the near UV region. Each complex shows a single, fully reversible Fe^(III/II) wave when probed electrochemically. Molecular quadratic nonlinear optical (NLO) responses are determined by using hyper-Rayleigh scattering and Stark spectroscopy. The latter gives static first hyperpolarisabilities β_0 reaching as high as approximately 10^(−27) esu and generally increasing with π-conjugation extension. Z-scan cubic NLO measurements reveal high two-photon absorption cross-sections σ2 of up to 5400 GM in one case. DFT calculations reproduce the π-conjugation dependence of β_0, and TD-DFT predicts three transitions close in energy contributing to the MLCT bands. The lowest energy transition has octupolar character, whereas the other two are degenerate and dipolar in nature

    Tunable Chiral Second-Order Nonlinear Optical Chromophores Based on Helquat Dications

    Get PDF
    Fourteen new dipolar cations have been synthesized, containing methoxy or tertiary amino electron donor groups attached to helquat (Hq) acceptors. These Hq derivatives have been characterized as their TfO^– salts by using various techniques including NMR and electronic absorption spectroscopies. UV–vis spectra show intense, relatively low energy absorptions with λ_(max) ≈ 400–600 nm, attributable to intramolecular charge-transfer (ICT) excitations. Single-crystal X-ray structures have been solved for two of the chromophores, one as its PF_6^– salt, revealing centrosymmetric packing arrangements (space groups Pbca and P1̅). Molecular quadratic nonlinear optical (NLO) responses have been determined directly by using hyper-Rayleigh scattering (HRS) with a 800 nm laser, and indirectly via Stark (electroabsorption) spectroscopy for the low energy absorption bands. The obtained static first hyperpolarizabilities β_0 range from moderate to large: (9–140) × 10^(–30) esu from HRS in MeCN and (44–580) × 10^(–30) esu from the Stark data in PrCN. The magnitude of β_0 increases upon either extending the π-conjugation length or replacing a methoxy with a tertiary amino electron donor substituent. Density functional theory (DFT) and time-dependent DFT calculations on selected tertiary amino chromophores confirm that the low energy absorptions have ICT character. Relatively good agreement between the simulated and experimental UV–vis absorption spectra is achieved by using the CAM-B3LYP functional with the 6-311G(d) basis set. The β_(tot) values predicted by using DFT at the same level of theory are large ((472–1443) × 10^(–30) esu in MeCN). Both the theoretical and experimental results show that para-conjugation between Hq and electron donor fragments is optimal, and enlarging the Hq unit is inconsequential with respect to the molecular quadratic NLO response

    Synthesis, Structures, and Optical Properties of Ruthenium(II) Complexes of the Tris(1-pyrazolyl)methane Ligand

    Get PDF
    Four new complex salts [Ru^(II)Cl(Tpm)(L^A)_2][PF_6]_n [Tpm = tris(1-pyrazolyl)methane; n = 1, L^A = pyridine (py) 1 or ethyl isonicotinate (EIN) 2; n = 3, L^A = N-methyl-4,4′-bipyridinium (MeQ^+) 3 or N-phenyl-4,4′-bipyridinium (PhQ^+) 4] have been prepared and characterized. Electronic absorption spectra show intense d → π^* metal-to-ligand charge-transfer (MLCT) absorption bands, while cyclic voltammetry reveals a reversible Ru^(III/II) wave, accompanied by quasireversible or irreversible L^A-based reductions for all except 1. Single crystal X-ray structures have been obtained for 1•Me_2CO, 2, and 3•Me_2CO. For 2–4, molecular first hyperpolarizabilities β have been measured in acetonitrile solutions via the hyper-Rayleigh scattering (HRS) technique at 800 nm. Stark (electroabsorption) spectroscopic studies on the MLCT bands in frozen butyronitrile allow the indirect estimation of static first hyperpolarizabilities β_0. The various physical data obtained for 3 and 4 are compared with those reported previously for related cis-{Ru^(II)(NH_3)_4}^(2+) species [Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845]. TD-DFT calculations on the complexes in 1–4 confirm that their lowest energy absorption bands are primarily Ru^(II) → L^A MLCT in character, while Ru^(II) → Tpm MLCT transitions are predicted at higher energies. DFT agrees with the Stark, but not the HRS measurements, in showing that β_0 increases with the electron-accepting strength of L^A. The 2D nature of the chromophores is evidenced by dominant β_(xxy) tensor components

    Nonlinear Optical Chromophores with Two Ferrocenyl, Octamethylferrocenyl, or 4‑(Diphenylamino)phenyl Groups Attached to Rhenium(I) or Zinc(II) Centers

    Get PDF
    The compounds 4,4′-bis[(E)-2-R-vinyl]-2,2′-bipyridyl {R = ferrocenyl [(Fcv)_2bpy], octamethylferrocenyl [(Me_8Fcv)_2bpy] or 4-(diphenylamino)phenyl [(Dapv)_2bpy]} are used to prepare eight new complexes with Zn^(II)Cl_2, Zn^(II)(OAc)_2, or fac-Re^ICl(CO)_3 centers. The recently reported complex fac-Re^ICl(CO)_3[(Dapv)_2bpy] (Horvath, R. et al. Inorg. Chem. 2013, 52, 1304) is also studied. Electronic absorption spectra show intense d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) absorption bands, the relative energies of which correlate logically with the molecular structure. Cyclic voltammetry reveals a reversible oxidation wave for the Fc/Me_8Fc complexes, accompanied by quasireversible or irreversible ligand-based reductions. The Re complexes also show irreversible Re^(II/I) waves. Single-crystal X-ray structures are reported for (Me_8Fcv)_2bpy, Zn^(II)Cl_2[(Me_8Fcv)_2bpy], Zn^(II)(OAc)_2[(Fcv)_2bpy]·CHCl_3, and fac-Re^ICl(CO)_3[(Me_8Fcv)_2bpy]·0.5CHCl_3. Molecular first hyperpolarizabilities β are measured in DCM solutions via the hyper-Rayleigh scattering (HRS) technique at 1300 nm. Stark (electroabsorption) spectroscopic studies on only the MLCT bands in frozen butyronitrile allow the indirect estimation of lower limits for the overall static first hyperpolarizabilities β_0. Time-dependent density functional theory (TD-DFT) calculations on selected complexes confirm the expected assignments of their low energy absorption bands, with the best results obtained by using the M06 functional and Def2-TZVP/SVP/TZVPP mixed basis set. DFT predicts that the total static first hyperpolarizability β_(tot) increases in the Zn^(II)Cl_2 series in the order R = Fc < Me_8Fc < Dap, consistent with the HRS and Stark data. The computed β values increase substantially on moving from the gas phase to a DCM or MeCN solvent medium, and the essentially 2D nature of the chromophores leads to dominant β_(xxy) tensor components

    A Multiclass Radiomics Method-Based WHO Severity Scale for Improving COVID-19 Patient Assessment and Disease Characterization From CT Scans.

    Get PDF
    OBJECTIVES The aim of this study was to evaluate the severity of COVID-19 patients' disease by comparing a multiclass lung lesion model to a single-class lung lesion model and radiologists' assessments in chest computed tomography scans. MATERIALS AND METHODS The proposed method, AssessNet-19, was developed in 2 stages in this retrospective study. Four COVID-19-induced tissue lesions were manually segmented to train a 2D-U-Net network for a multiclass segmentation task followed by extensive extraction of radiomic features from the lung lesions. LASSO regression was used to reduce the feature set, and the XGBoost algorithm was trained to classify disease severity based on the World Health Organization Clinical Progression Scale. The model was evaluated using 2 multicenter cohorts: a development cohort of 145 COVID-19-positive patients from 3 centers to train and test the severity prediction model using manually segmented lung lesions. In addition, an evaluation set of 90 COVID-19-positive patients was collected from 2 centers to evaluate AssessNet-19 in a fully automated fashion. RESULTS AssessNet-19 achieved an F1-score of 0.76 ± 0.02 for severity classification in the evaluation set, which was superior to the 3 expert thoracic radiologists (F1 = 0.63 ± 0.02) and the single-class lesion segmentation model (F1 = 0.64 ± 0.02). In addition, AssessNet-19 automated multiclass lesion segmentation obtained a mean Dice score of 0.70 for ground-glass opacity, 0.68 for consolidation, 0.65 for pleural effusion, and 0.30 for band-like structures compared with ground truth. Moreover, it achieved a high agreement with radiologists for quantifying disease extent with Cohen κ of 0.94, 0.92, and 0.95. CONCLUSIONS A novel artificial intelligence multiclass radiomics model including 4 lung lesions to assess disease severity based on the World Health Organization Clinical Progression Scale more accurately determines the severity of COVID-19 patients than a single-class model and radiologists' assessment

    Helquat Dyes: Helicene-like Push–Pull Systems with Large Second-Order Nonlinear Optical Responses

    Get PDF
    Helquat dyes combine a cationic hemicyanine with a helicene-like motif to form a new blueprint for chiral systems with large and tunable nonlinear optical (NLO) properties. We report a series of such species with characterization, including determination of static first hyperpolarizabilities β_0 via hyper-Rayleigh scattering and Stark spectroscopy. The measured β_0 values are similar to or substantially larger than that of the commercial chromophore E-4′-(dimethylamino)-N-methyl-4-stilbazolium. Density functional theory (DFT) and time-dependent DFT calculations on two of the new cations are used to probe their molecular electronic structures and optical properties. Related molecules are expected to show bulk second-order NLO effects in even nonpolar media, overcoming a key challenge in developing useful materials
    • …
    corecore