14 research outputs found

    The endoplasmic reticulum plays a key role in α-cell intracellular Ca2+ dynamics and glucose-regulated glucagon secretion in mouse islets

    Get PDF
    Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity

    The endoplasmic reticulum plays a key role in α-cell intracellular Ca2+ dynamics and glucose-regulated glucagon secretion in mouse islets

    Get PDF
    Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity

    Glucose stimulates somatostatin secretion in pancreatic δ-cells by cAMP-dependent intracellular Ca2+ release

    Get PDF
    © 2019 Denwood et al.Somatostatin secretion from pancreatic islet δ-cells is stimulated by elevated glucose levels, but the underlying mechanisms have only partially been elucidated. Here we show that glucose-induced somatostatin secretion (GISS) involves both membrane potential-dependent and -independent pathways. Although glucose-induced electrical activity triggers somatostatin release, the sugar also stimulates GISS via a cAMP-dependent stimulation of CICR and exocytosis of somatostatin. The latter effect is more quantitatively important and in mouse islets depolarized by 70 mM extracellular K+, increasing glucose from 1 mM to 20 mM produced an ∼3.5-fold stimulation of somatostatin secretion, an effect that was mimicked by the application of the adenylyl cyclase activator forskolin. Inhibiting cAMP-dependent pathways with PKI or ESI-05, which inhibit PKA and exchange protein directly activated by cAMP 2 (Epac2), respectively, reduced glucose/forskolin-induced somatostatin secretion. Ryanodine produced a similar effect that was not additive to that of the PKA or Epac2 inhibitors. Intracellular application of cAMP produced a concentration-dependent stimulation of somatostatin exocytosis and elevation of cytoplasmic Ca2+ ([Ca2+]i). Both effects were inhibited by ESI-05 and thapsigargin (an inhibitor of SERCA). By contrast, inhibition of PKA suppressed δ-cell exocytosis without affecting [Ca2+]i Simultaneous recordings of electrical activity and [Ca2+]i in δ-cells expressing the genetically encoded Ca2+ indicator GCaMP3 revealed that the majority of glucose-induced [Ca2+]i spikes did not correlate with δ-cell electrical activity but instead reflected Ca2+ release from the ER. These spontaneous [Ca2+]i spikes are resistant to PKI but sensitive to ESI-05 or thapsigargin. We propose that cAMP links an increase in plasma glucose to stimulation of somatostatin secretion by promoting CICR, thus evoking exocytosis of somatostatin-containing secretory vesicles in the δ-cell.Peer reviewedFinal Published versio

    Somatostatin secretion by Na+-dependent Ca2+-induced Ca2+ release in pancreatic delta-cells.

    Get PDF
    Pancreatic islets are complex micro-organs consisting of at least three different cell types: glucagon-secreting α-, insulin-producing β- and somatostatin-releasing δ-cells1. Somatostatin is a powerful paracrine inhibitor of insulin and glucagon secretion2. In diabetes, increased somatostatinergic signalling leads to defective counter-regulatory glucagon secretion3. This increases the risk of severe hypoglycaemia, a dangerous complication of insulin therapy4. The regulation of somatostatin secretion involves both intrinsic and paracrine mechanisms5 but their relative contributions and whether they interact remains unclear. Here we show that dapagliflozin-sensitive glucose- and insulin-dependent sodium uptake stimulates somatostatin secretion by elevating the cytoplasmic Na+ concentration ([Na+]i) and promoting intracellular Ca2+-induced Ca2+ release (CICR). This mechanism also becomes activated when [Na+]i is elevated following the inhibition of the plasmalemmal Na+-K+ pump by reductions of the extracellular K+ concentration emulating those produced by exogenous insulin in vivo6. Islets from some donors with type-2 diabetes hypersecrete somatostatin, leading to suppression of glucagon secretion that can be alleviated by a somatostatin receptor antagonist. Our data highlight the role of Na+ as an intracellular second messenger, illustrate the significance of the intraislet paracrine network and provide a mechanistic framework for pharmacological correction of the hormone secretion defects associated with diabetes that selectively target the δ-cells

    The endoplasmic reticulum plays a key role in α-cell intracellular Ca2+ dynamics and glucose-regulated glucagon secretion in mouse islets

    No full text
    Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity

    Modulation of large dense core vesicle insulin content mediates rhythmic hormone release from pancreatic beta cells over the 24h cycle

    Get PDF
    International audienceThe rhythmic nature of insulin secretion over the 24h cycle in pancreatic islets has been mostly investigated using transcriptomics studies showing that modulation of insulin secretion over this cycle is achieved via distal stages of insulin secretion. We set out to measure β-cell exocytosis using in depth cell physiology techniques at several time points. In agreement with the activity and feeding pattern of nocturnal rodents, we find that C57/Bl6J islets in culture for 24h exhibit higher insulin secretion during the corresponding dark phase than in the light phase (Zeitgeber Time ZT20 and ZT8, respectively, in vivo). Glucose-induced insulin secretion is increased by 21% despite normal intracellular Ca2+ transients and depolarization-evoked exocytosis, as measured by whole-cell capacitance measurements. This paradox is explained by a 1.37-fold increase in beta cell insulin content. Ultramorphological analyses show that vesicle size and density are unaltered, demonstrating that intravesicular insulin content per granule is modulated over the 24h cycle. Proinsulin levels did not change between ZT8 and ZT20. Islet glucagon content was inversely proportional to insulin content indicating that this unique feature is likely to support a physiological role. Microarray data identified the differential expression of 301 transcripts, of which 26 are miRNAs and 54 are known genes (including C2cd4b, a gene previously involved in insulin processing, and clock genes such as Bmal1 and Rev-erbα). Mouse β-cell secretion over the full course of the 24h cycle may rely on several distinct cellular functions but late night increase in insulin secretion depends solely on granule insulin content

    Loss of tetraspanin-7 expression reduces pancreatic β-cell exocytosis Ca2+ sensitivity but has limited effect on systemic metabolism.

    No full text
    Tetraspanin-7 (Tspan7) is an islet autoantigen involved in autoimmune type 1 diabetes and known to regulate β-cell L-type Ca2+ channel activity. However, the role of Tspan7 in pancreatic β-cell function is not yet fully understood.info:eu-repo/semantics/publishe

    Expression levels of main circadian genes and corresponding Glucose Stimulated Insulin Secretion (GSIS) at peaks of expression.

    No full text
    <p><i>A</i>: 24h expression profile of <i>rev-erb α</i> and β and <i>Bmal1</i> in islets cultured for 24h and sampled every 6h (except first two sample times collected at 15:00 (ZT8) and 19:00 (ZT11)). <i>B</i>: Expression profiles at ZT8 and ZT20 of <i>rev-erb α</i>, <i>rev-erb</i> β, and <i>Bmal1</i> in islets from normal or inversed cycle mice after 24h of culture. Islet isolation and sampling time are indicated in schematics. Data are from 4 animals for (<i>A</i>) and 3 animals for (B), with 2 technical replicates per animal and per ZT where applicable. White circles = Rev-erb <i>α</i>; White squares = Rev-erb β; Dark squares = Bmal1; *<i>P</i><0.05 by ANOVA (A). <i>C</i>: Basal (2.8 mM glucose) and Glucose induced (16.7 mM glucose) insulin secretion from ZT8 and ZT20 islets. Grey bars = ZT8; Dark bars = ZT20; N = 20–60 experimental replicates across 6 animals per ZT. *<i>P</i><0.05 using a <i>t-test</i>.</p
    corecore