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Pancreatic islets are complex micro-organs consisting of at least three different cell 25 

types: glucagon-secreting α-, insulin-producing β- and somatostatin-releasing δ-cells1. 26 

Somatostatin is a powerful paracrine inhibitor of insulin and glucagon secretion2. In 27 

diabetes, increased somatostatinergic signalling leads to defective counter-regulatory 28 

glucagon secretion3. This increases the risk of severe hypoglycaemia, a dangerous 29 

complication of insulin therapy4. The regulation of somatostatin secretion involves both 30 

intrinsic and paracrine mechanisms5 but their relative contributions and whether they 31 

interact remains unclear. Here we show that dapagliflozin-sensitive glucose- and 32 

insulin-dependent sodium uptake stimulates somatostatin secretion by elevating the 33 

cytoplasmic Na+ concentration ([Na+]i) and promoting intracellular Ca2+-induced Ca2+ 34 

release (CICR). This mechanism also becomes activated when [Na+]i is elevated 35 

following the inhibition of the plasmalemmal Na+-K+ pump by reductions of the 36 

extracellular K+ concentration emulating those produced by exogenous insulin in vivo6. 37 

Islets from some donors with type-2 diabetes hypersecrete somatostatin, leading to 38 

suppression of glucagon secretion that can be alleviated by a somatostatin receptor 39 

antagonist. Our data highlight the role of Na+ as an intracellular second messenger, 40 

illustrate the significance of the intraislet paracrine network and provide a mechanistic 41 

framework for pharmacological correction of the hormone secretion defects associated 42 

with diabetes that selectively target the δ-cells. 43 

(200 words/200 allowed) 44 

Somatostatin secretion from pancreatic δ-cells is a Ca2+-dependent process involving influx 45 

of extracellular Ca2+ and mobilization of intracellular Ca2+ 5. Mechanistic studies of the 46 

metabolic regulation of somatostatin secretion are complicated by the scarcity of δ-cells 47 

within the pancreatic islets (approx. 5%)1. To study the role of intracellular Ca2+ in the 48 
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regulation of somatostatin (Sst) secretion from δ-cells, we used mice expressing the 49 

genetically encoded Ca2+ sensor GCaMP3 in Sst-expressing cells (Sst-Cre-GCaMP3 50 

mice7).These mice exhibited normal gross characteristics, glucose homeostasis and 51 

pancreatic islet hormone release (Supplementary Fig. 1a-f). Expression of GCaMP3 was 52 

confined to the δ-cells (Supplementary Fig. 2a-c). GCaMP3-positive cells had high 53 

expression of key δ-cell genes such as the intracellular Ca2+ release channels RyR3 and InsP3 54 

as well as the plasmalemmal voltage-gated R- and T-type Ca2+ channels (Supplementary 55 

Table 1). Of the glucose transporters, δ-cells expressed particularly high levels of Glut1 but 56 

low expression of Sglt1 and Sglt2 was also detected. 57 

We correlated Sst release and δ-cell cytoplasmic Ca2+ ([Ca2+]i) in Sst-Cre-GCaMP3 islets. 58 

Three examples of recordings of [Ca2+]i in individual δ-cells within intact pancreatic islets 59 

are shown in Fig. 1a. The glucose responsiveness was variable: spontaneous [Ca2+]i 60 

oscillations were observed in 27±3% of the cells at 1 mM glucose, which increased to 61 

48±7% (p<0.05 vs 1 mM) at 4 mM and 82±5% at 20 mM glucose (p<0.001 vs 1 mM; 79 62 

cells in 7 islets from 7 mice). Increasing glucose from 1 to 4 and 20 mM stimulated Sst 63 

release by 100% and 1000%, respectively (Fig. 1b), responses that were associated with 64 

comparable increases in the frequency of the [Ca2+]i oscillations (Fig. 1c). When applied at 65 

1 mM glucose, the KATP channel blocker tolbutamide (0.2 mM) produced a 5-fold increase in 66 

the frequency of the [Ca2+]i oscillations (Fig. 1d and Supplementary Fig. 3a). 67 

Conversely, the KATP channel activator diazoxide and the L- and R-type Ca2+ channel 68 

blockers isradipine and SNX-482, respectively, abolished or reduced glucose-induced 69 

[Ca2+]i oscillations in most δ-cells and strongly inhibited Sst secretion (Fig. 1e-g and 70 

Supplementary Figs. 3 and 4). Sst secretion involves intracellular Ca2+ release by a 71 
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mechanism sensitive to ryanodine and thapsigargin8 (Supplementary Fig. 4a). The 72 

inhibitory effect of thapsigargin on Sst secretion correlated with an average 40% decrease in 73 

the frequency of the [Ca2+]i oscillations (Supplementary Fig. 4e).  74 

To distinguish between entry of extracellular Ca2+ and intracellular Ca2+ release in driving the 75 

glucose-induced [Ca2+]i response, we performed parallel measurements of [Ca2+]i and 76 

membrane potential in superficial δ-cells within intact islets (Fig. 2a). Increasing glucose 77 

resulted in membrane depolarization and initiation of action potential firing. Large [Ca2+]i 78 

oscillations preceded the initiation of electrical activity and action potential firing was in fact 79 

associated with only small increases in [Ca2+]i. Increasing glucose also induced [Ca2+]i 80 

oscillations in δ-cells voltage-clamped at -70 mV (Fig. 2b), an experimental paradigm 81 

leading to the abolition of spontaneous electrical activity. Although the glucose-induced 82 

[Ca2+]i oscillations observed in voltage-clamped cells cannot result from action potential 83 

firing, they were strongly inhibited (fully or partially) by diazoxide (Fig. 2b, inset).  84 

How can glucose induce [Ca2+]i oscillations in hyperpolarised/voltage-clamped δ-cells and 85 

why are they suppressed by diazoxide? Diazoxide inhibits glucose-induced action potential 86 

firing and secretion in the β-cell9. We therefore hypothesized that paracrine factors (such as 87 

insulin10 or urocortin-311) released in response to electrical activity in neighbouring 88 

(unclamped) β-cells underlie the [Ca2+]i oscillations in voltage-clamped δ-cells. This scenario 89 

is supported by the finding that the suppression of glucose-induced [Ca2+]i oscillations by 90 

diazoxide was reversed in some δ-cells by addition of exogenous insulin (17% of δ-cells; Fig. 91 

2c i) or urocortin-3 (9% of δ-cells; Fig. 2c ii). To restore intracellular cAMP levels in the δ-92 

cells that may have decreased following diazoxide-induced inhibition of glucagon12 and 93 

urocortin-3 release (both of which act by promoting cAMP production), we also tested the 94 

effects of insulin in the presence of 3 µM of forskolin. In the presence of this adenylate 95 
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cyclase activator, insulin more robustly induced [Ca2+]i oscillations (27% of δ-cells; Fig. 2c 96 

iii; p=0.048 vs. no forskolin by χ2). In the presence of forskolin, spontaneous [Ca2+]i 97 

oscillations were observed in some δ-cells even before addition of insulin and the frequency 98 

of these oscillations was much higher in the simultaneous presence of insulin and forskolin 99 

than in the presence of insulin alone (0.6 min-1 vs 0.12 min-1; p=0.01). Insulin’s capacity to 100 

induce [Ca2+]i oscillations in δ-cells was antagonised by dapagliflozin (an inhibitor of 101 

sodium-glucose co-transporter 2, SGLT2) in 85% of insulin-responsive cells (Fig. 2c, iii-iv). 102 

It was ascertained separately that forskolin-induced stimulation of Sst secretion was not 103 

affected by dapagliflozin in mouse and human islets (Supplementary Fig. 5a-b). 104 

The effect of insulin on [Ca2+]i in δ-cells correlated with stimulation of Sst release: diazoxide 105 

reduced glucose-induced Sst release by 80%, an effect reversed by application of exogenous 106 

insulin (Fig. 2d). Dapagliflozin abolished the stimulatory effect of exogenous insulin on Sst 107 

secretion in the presence of glucose and diazoxide (Fig. 2d). Although Sst release in the 108 

presence of insulin, diazoxide and glucose was not statistically lower than in islets exposed to 109 

20 mM glucose alone (p=0.16), the mean value was 30% lower. This might reflect the 110 

component of Sst secretion resulting from δ-cell electrical activity 13 and/or urocortin-3 11.  111 

We next examined the role of endogenous insulin (i.e. that released from β-cells within the 112 

islets) on Sst secretion using islets from mice lacking insulin receptors in Sst-expressing cells 113 

(SIRKO mice14). Glucose-stimulated Sst secretion was 50% weaker in the insulin receptor-114 

deficient islets than in control islets (Fig. 2e), an effect recapitulated by the insulin receptor 115 

antagonist S961 (Supplementary Fig. 5c-d). Dapagliflozin reduced glucose-induced Sst 116 

secretion by 70% in wild-type islets under control conditions. Sst secretion in wild-type islets 117 

in the simultaneous presence of 20 mM glucose and dapagliflozin was not statistically 118 

different (p<0.16) from that in SIRKO islets exposed to 20 mM glucose alone. Dapagliflozin 119 
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reduced somatostatin secretion in SIRKO islets but this effect did not attain statistical 120 

significance (p=0.06).  121 

In islets exposed to 20 mM glucose, dapagliflozin inhibited Sst release with an IC50 of 10 nM 122 

(Fig. 2f). The effects of phlorizin (50 μM) on glucose-induced Sst secretion were similar to 123 

those of high concentrations of dapagliflozin (Fig. 2g). Part of the stimulatory effect of 124 

glucose on Sst secretion was resistant to both dapagliflozin and phlorizin, presumably 125 

reflecting the stimulation mediated by KATP channel closure. Indeed, Sst secretion in the 126 

presence of glucose and phlorizin was not higher than that elicited by 0.3 mM tolbutamide 127 

(p=0.33; Fig. 2g). Sst secretion elicited by this high concentration of tolbutamide (40x the Ki 128 

for the inhibitory effect on KATP channels9) is only 20% of that produced by 20 mM glucose, 129 

reinforcing previous arguments that depolarization as such is a weak stimulus of Sst 130 

secretion8. 131 

In wild-type islets exposed to 20 mM glucose, glucagon secretion was reduced by 52% 132 

compared to that observed at 1 mM glucose (Fig. 2h). This inhibitory effect was reversed by 133 

addition of either the Sst receptor 2 (SSTR2) antagonist CYN154806 or dapagliflozin. The 134 

combination of CYN154806 and dapagliflozin produced greater stimulation of glucagon 135 

secretion than dapagliflozin alone (p<0.01). Neither dapagliflozin nor CYN154806 affected 136 

glucagon or Sst secretion at 1 mM glucose (Supplementary Fig. 6a-b).  137 

How does dapagliflozin inhibit Sst secretion? Electrical activity and elevation of [Ca2+]i 138 

mediated glucose-induced Sst secretion. The effects of dapagliflozin on glucose-induced δ-139 

cell electrical activity (Supplementary Fig. 6c) and [Ca2+]i increases were inconsistent 140 

(Supplementary Fig. 7a-b). 141 
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There is functional and immunocytochemical evidence for the presence of SGLT2 in δ-142 

cells10. To specifically activate the SGLT-expressing δ-cells, we used the non-metabolisable 143 

SGLT-specific substrate methyl-α-D-glucopyranoside (αMDG)15. When tested at 1 mM 144 

glucose, addition of αMDG (19 mM) stimulated Sst secretion, albeit less strongly than a 145 

corresponding increase in glucose (Fig. 2i). This stimulatory effect of αMDG on Sst 146 

secretion was associated with the occurrence of [Ca2+]i oscillations in 37% of the δ-cells (Fig. 147 

3a) without stimulation of δ-cell electrical activity (Supplementary Fig. 6d), suggesting they 148 

reflect intracellular Ca2+ release. In keeping with this idea, treatment of islets with 149 

thapsigargin largely abolished αMDG’s capacity to increase [Ca2+]i (p<0.001 compared to no 150 

thapsigargin by χ2; Fig. 3b).  151 

SGLTs mediate the uptake of glucose/αMDG by co-transport with Na+ down its 152 

electrochemical gradient. We explored the significance of the transmembrane Na+ gradient 153 

for the effects of αMDG on δ-cell [Ca2+]i by lowering the extracellular Na+ concentration 154 

([Na+]o) from the normal 140 mM to 10 mM. This reduced both the αMDG-induced [Ca2+]i 155 

oscillations (Fig. 3a) and αMDG- and glucose-induced Sst secretion (Fig. 2i). The inhibitory 156 

effect of Na+ removal on glucose-induced Sst secretion was comparable to that produced by 157 

dapagliflozin in control islets (cf. Fig. 2e). Addition of αMDG increased [Na+]i in 39% of the 158 

δ-cells (Fig. 3c-d and Supplementary Fig. 6e), in agreement with the fraction of δ-cells in 159 

which [Ca2+]i oscillations were induced by αMDG (37%; see above). When αMDG was 160 

applied in the presence of 100 nM dapagliflozin, the increase in [Na+]i was abolished (Fig. 161 

3c-d). Dapagliflozin (1 nM-1 μM) also prevented the insulin-dependent potentiation of the 162 

αMDG-induced increase in [Na+]i (Fig 3e-f and Supplementary Fig. 8).  163 
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We hypothesised that the increase in [Na+]i triggers CICR by producing a small increase in 164 

[Ca2+]i. This idea is supported by our finding that application of the Na+ ionophore monensin 165 

initiated [Ca2+]i oscillations (Fig. 3g). The oscillations evoked by monensin persisted for >30 166 

min and were resistant to a cocktail of diazoxide and the Ca2+ channel blockers isradipine and 167 

SNX482 (Fig. 3g and Supplementary Fig. 9a) and independent of electrical activity (Fig. 3b 168 

and Supplementary Fig. 9b).  169 

Lowering [K+]o inhibits the plasmalemmal Na+/K+ pump16 and it is therefore expected to 170 

increase [Na+]i. Insulin’s hypokalaemic (i.e. reduction of plasma K+) action is well 171 

established and has been attributed to stimulation of K+ uptake in skeletal muscle17. In mice, 172 

insulin (0.75 U/kg) lowered plasma [K+] from 5.0±0.7 to 3.0±0.3 mM (Fig. 3h), comparable 173 

to that reported in patients with type 1 diabetes6. Notably, plasma [K+] fell to values <4 mM 174 

in all mice and <2.7 mM in 3 of 5 mice. Lowering [K+]o to 2.7 mM increased [Na+]i in δ-cells 175 

(Fig. 3i-j). This increase in [Na+]o was associated with the induction of [Ca2+]i oscillations in 176 

72% of δ-cells in islets exposed to 1 mM glucose (Fig. 3k). 177 

At 1 mM glucose, δ-cells are hyperpolarized and do not generate action potentials. Reducing 178 

[K+]o to 1.7 mM promptly produced an additional 7±1 mV hyperpolarization (n=3: measured 179 

5 min after switching to the lower [K+]o). The resting membrane potential of the δ-cell is 180 

determined by KATP channel activity18 and depends on [K+]o (Supplementary Fig. 9d). We 181 

determined the effect of reduced [K+]o on glucagon and Sst secretion. Despite its 182 

hyperpolarising effect, lowering [K+]o from 4.7 mM to 3.7 mM stimulated Sst secretion in 183 

islets exposed to 6 mM glucose; no further stimulation was observed at 2.7 or 1.7 mM (Fig. 184 

4a). A stimulatory effect was also observed at 1 mM glucose but in this case a reduction to 185 

≤2.7 mM was required (Fig. 4a). The stimulation of Sst secretion was associated with 186 

progressive inhibition of glucagon secretion at both 1 and 6 mM (Fig. 4b). We found that 187 
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CYN154806 reversed the inhibitory effect of 1.7 mM [K+]o at both 1 mM or 6 mM glucose 188 

(Fig. 4c). Thus, the insulin-induced reductions of plasma K+ are likely to be associated with 189 

stimulation of Sst secretion under both normoglycaemic (6 mM) and severely 190 

‘hypoglycaemic’ (1 mM) conditions in vitro.  191 

Type-2 diabetes (T2DM) is associated with impaired glucose-induced insulin secretion and 192 

dysregulation of glucagon secretion12,19 but whether Sst secretion is also affected is not 193 

known. We studied Sst and glucagon in hyperglycaemic Fh1βKO mice, a model of 194 

progressive β-cell failure associated with marked suppression of glucagon secretion20. In 195 

control islets, Sst secretion at 1 mM glucose was low and stimulated >10-fold at 20 mM 196 

glucose. In islets from hyperglycaemic Fh1βKO mice, Sst secretion at 1 mM glucose was 197 

increased 6-fold compared to control islets (echoing previous observations in diabetic dogs 198 

and rats21,22) and 20 mM glucose was without a statistically significant stimulatory effect 199 

(Fig. 4d). This correlated with a >75% reduction of glucagon secretion at 1 mM glucose 200 

(p<0.05; Fig. 4e). Consistent with an increased Sst tone at 1 mM glucose, addition of 201 

CYN154806 increased glucagon secretion by 143±11% in Fh1βKO mice but only 13±14% in 202 

controls (p=0.022). 203 

We extended these data to human islets. In islets from non-diabetic donors (ND), Sst 204 

secretion was low at 1 mM glucose and stimulated >3-fold by 20 mM glucose (Fig. 4f). In 205 

contrast, glucose was without stimulatory effect in islets from donors with T2DM. 206 

Interestingly, there was a trend (p<0.06) towards elevated Sst release at 1 mM glucose, 207 

similar to that observed in Fh1βKO islets. There was no difference in Sst content in islets 208 

from diabetic and non-diabetic donors (Supplementary Fig. 10a). In T2DM islets, glucagon 209 

secretion at 1 mM glucose was on average 65% lower than observed in ND preparations (Fig. 210 

4g), despite glucagon content was 200% higher in T2DM islets (Supplementary Fig. 10b). 211 
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We tested whether Sst receptor antagonists can restore glucagon secretion at low glucose in a 212 

small number of human T2DM islet preparations. We found that the SSTR2 antagonist 213 

CYN154806 increased glucagon secretion at 1 mM glucose in two preparations with low 214 

glucagon secretion. In a third preparation with higher glucagon secretion, CYN154806 had 215 

no effect (Fig. 4h). Extrapolating from our findings in islets from mice we propose that the 216 

stimulatory effect of the SSTR2 antagonist in T2DM islets reflects hypersecretion of Sst at 217 

low glucose concentrations. This conclusion is reinforced by electrophysiological 218 

measurements in intact human pancreatic islets demonstrating transient and CYN154806-219 

sensitive membrane hyperpolarizations in T2DM but not in ND α-cells (Supplementary Fig. 220 

10c-e).  221 

The schematic in Fig. 4i combines these findings into a model for glucose-induced Sst 222 

secretion that incorporates KATP channels, the Na+/K+ pump, voltage-gated Ca2+ channels and 223 

intracellular Ca2+-induced Ca2+ release (CICR). Glucose- and insulin-dependent Na+ uptake 224 

is sufficient to trigger CICR and Sst secretion in δ-cells even in the absence of electrical 225 

activity. The effects of dapagliflozin in δ-cells were observed at 1-10 nM, concentrations 226 

adequate to suppress SGLT2 activity but too low to inhibit SGLT123. However, the 227 

expression of Slc5a2 (which encodes SGLT2) is low in mouse δ-cells and that of Slc5a1 228 

(encoding SGLT1) is higher (although still lower than transcripts encoding GLUT1-3; see 229 

Supplementary Table 1 and 24). The low expression of SGLT1/2 would be in agreement 230 

with the small size of the current (~1 pA) in δ-cells inhibited by high (μM) concentrations of 231 

dapagliflozin14. In kidney cells, insulin selectively activates SGLT2 (via an effect involving 232 

protein phosphorylation) with little effect on SGLT125 but it remains possible that SGLT1 is 233 

insulin-sensitive in δ-cells. Dapagliflozin has been reported to stimulate glucagon secretion 234 

both in vitro26 and in vivo27 (but see 24). Our data suggest that the stimulation of glucagon 235 
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secretion is secondary to the suppression of Sst secretion, resulting in removal of paracrine 236 

suppression of α-cells. Given the low expression of Slc5a2 in δ-cells, the possibility that the 237 

dapagliflozin-induced suppression of Sst secretion reflects an off-target SGLT2-independent 238 

effect remains possible, similar to what was recently reported for the related compound 239 

canagliflozin28. Ultimately, to conclusively demonstrate that SGLT1 or 2 are functional in δ-240 

cells, studies would need to be conducted using δ-cell-specific ablation of Slc5a1 and/or 241 

Slc5a2.  242 

Despite the uncertainty about the molecular identity of the transporter mediating Na+ and 243 

glucose uptake into δ-cells, it is clear that the mechanisms involved culminate in elevation of 244 

[Na+]i, which accounts for the Na+-dependent ability of the non-metabolisable glucose 245 

analogue αMDG to evoke [Ca2+]i oscillations and Sst release by promoting CICR, in 246 

agreement with previously reported stimulatory effects of 3-O-methyl-D-glucose on Sst 247 

secretion29. It is notable that inhibition of the plasmalemmal Na+/Ca2+ (NCX) by reduction of 248 

[Na+]o leads to a reduction of Ca2+ in δ-cells (i.e. the opposite to what we observe and unlike 249 

the increase seen in β-cells30). We therefore propose that the αMDG/glucose-induced 250 

increase [Na+]i is mediated by activation of intracellular Na+/Ca2+ exchange (like NCLX31) 251 

rather than inhibition of NCX. The resulting small/initial increase in δ-cell [Ca2+]i thus 252 

produced leads to further mobilization of Ca2+ from intracellular stores (including the sER) 253 

by activation of CICR, explaining why the effect of αMDG on [Ca2+]i was almost abolished 254 

after pretreatment with thapsigargin. The model explains why glucose is a stronger stimulus 255 

of Sst secretion than αMDG. Unlike αMDG, which exclusively acts by increasing [Na+]i, 256 

glucose also causes KATP channel closure. Thus, elevation of [Na+]i represents one important 257 

intracellular messenger – but not the only one - linking elevated plasma glucose to 258 

stimulation of Sst secretion.  259 
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Our findings suggest that exogenous insulin may not only lead to hypoglycaemia by 260 

stimulating glucose uptake but also interfere with the defences against hypoglycaemia by 261 

producing hypokalaemia by stimulation of Sst secretion (via inhibition of the Na-K pump and 262 

elevation of [Na+]i) and suppression of glucagon secretion. It is intriguing that the effects of 263 

T2DM on Sst secretion resemble those produced by lowering of [K+]o: namely increased 264 

basal Sst secretion and impaired stimulation by high glucose. Our data raise the interesting 265 

possibility that SGLT2 inhibitors – regardless of their exact mode of action - may correct the 266 

Sst secretion defects associated with diabetes, thereby restoring counter-regulatory glucagon 267 

secretion and reducing the risk of fatal hypoglycaemia4. 2860 words  268 
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Materials and Methods 269 

Ethics 270 

All animal experiments were conducted in accordance with the UK Animals Scientific 271 

Procedures Act (1986) and ethical guidelines of the universities of Oxford, Lund and 272 

Gothenburg and were approved by the respective local Ethical Committees. Human 273 

pancreatic islets were isolated, with ethical approval and clinical consent, at the Diabetes 274 

Research and Wellness Foundation Human islet Isolation Facility (Oxford) and the Alberta 275 

Diabetes Institute IsletCore (Edmonton, Canada). Details on the donors are provided in 276 

Supplementary Table 2. 277 

Mouse models  278 

In this study, mice expressing GCaMP3 and/or RFP under the Sst promoter (Sst-Cre-279 

GCaMP3 and Sst-Cre-RFP mice, respectively) were used. These mice were generated as 280 

previously described32. The generation of mice lacking insulin receptors in Sst-secreting δ-281 

cells (SIRKO mice) have been reported elsewhere14. Fh1βKO mice were generated as 282 

previously described33. 283 

Intraperitoneal glucose tolerance test  284 

Blood glucose levels were measured using the Accu-Check Aviva from a drop of blood 285 

obtained by a tail vein nick. For these experiments, 12-20 weeks old mice were used. Mice 286 

were fed ad libitum and fed blood glucose levels were measured prior to fasting. For the 287 

GCaMP3 experiments, mice were fasted overnight (16 h). A bolus of glucose (2g per kg of 288 

body weight, Sigma) was injected intraperitoneally (ip) with a 25-gauge needle at time 0. 289 
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Blood glucose levels were measured at intervals of 0, 15, 30, 60, 90, 120 and 150 min after ip 290 

glucose administration.  291 

Plasma K+ measurements 292 

Plasma K+ concentrations were measured with a micro-ion potassium selective electrode 293 

(LIS-146KCM), micro reference electrode (LIS DJM146) and a 6230N Ion meter (Lazar 294 

Research Laboratories, Inc., USA). K+ standard solutions were prepared by diluting 0.1 M 295 

standard KCl to concentrations between 0.1 and 100 mM KCl. Both the K+ and reference 296 

electrodes were placed in the standard solutions and the voltage determined. The K+ and 297 

references electrodes were washed and wiped between each measurement. The insulin 298 

tolerance tests were performed in C57Bl6j mice. Blood samples were obtained at t=0 and 299 

t=45 min after injection of insulin. The blood cells were removed and plasma frozen pending 300 

later analysis. Plasma samples were diluted 20x to a final volume of 100 μl and injected into 301 

clean well plates and measurements were conducted as above.  302 

Pancreatic islets isolation  303 

Mice (16-24 weeks old) were killed by cervical dislocation, the pancreases quickly removed 304 

and islets isolated either by collagenase (Sigma) or liberase (Roche) digestion.  305 

Immunocytochemistry  306 

Immunocytochemistry was performed as previously described14. The primary antibodies used 307 

in this study were: rabbit anti-somatostatin (Sigma, 1:250), Guinea pig anti-insulin (Sigma, 308 

1:3000), mouse anti-glucagon (Sigma, 1:4000), chicken anti-GFP (Invitrogen, 1:500). The 309 

secondary antibodies were all from Invitrogen (1:500).  310 
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Flow cytometry of islet cells (FACS) 311 

Pancreatic islets from Sst-Cre-GCaMP3 mice were dissociated into single cells by trypsin 312 

digestion and mechanical dissociation as described previously14 and filtered through a 30 μm 313 

filter to remove remaining clumps of cells.  314 

Single cells were passed through a MoFlo Legacy (Beckman Coulter). GCaMP3- or RFP-315 

positive cells were purified by combining several narrow gates. Forward and side scatter 316 

were used to isolate small cells and to exclude cell debris. Cells were then gated on pulse 317 

width to exclude doublets or triplets. GCaMP3-positive cells were excited with a 488 nm 318 

laser and the fluorescent signal was detected through a 530/40 nm bandpass filter (i.e. in the 319 

range 510-550 nm). RFP was excited with the 488 nm laser and the fluorescent signal was 320 

detected through a 580/30 nm bandpass filter (i.e. in the range 565-595nm). GCaMP3- or 321 

RFP-negative cells were collected in parallel.  322 

RNA extraction, cDNA synthesis and quantitative PCR 323 

The levels of gene expression in the positive and in the negative FAC-sorted fractions were 324 

determined using real-time quantitative PCR (qPCR). Total RNA was extracted using 325 

RNeasy Micro Kit (Qiagen) and cDNA was synthesised using High Capacity RNA-to-326 

cDNA™ Kit (Applied Biosystem).  327 

qPCR was performed using SYBR Green kit (QuantiFast SYBR Green PCR Kit, Qiagen) and 328 

ABI 7900HT Sequence Detection System (Applied Biosystems). Primers used were 329 

QuantiTect Primer Assays: QT00114289 (Ins2), QT00124033 (Gcg), QT00239295 (Sst), 330 

QT00095242 (Actb). Each sample was run in duplicate or triplicate. Differences in 331 

expression of target genes in the GCaMP3 positive/negative were calculated using the 2Δ-ΔCT 332 

method34. 333 
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Secretion measurements 334 

Freshly isolated islets were used in static secretion experiments. These experiments were 335 

performed as described previously10. 336 

Two different extracellular solutions (ES) were used for the various experiments: ES1 337 

contained (mM) 120 NaCl, 4.7 KCl, 2.5 CaCl2, 25 NaHCO3, 1.2 KH2PO4, 1.2 MgSO4, 10 338 

HEPES and 0.1% BSA (pH=7.4 with NaOH and bubbled with 95:5% O2:CO2). For some 339 

experiments (to allow correlation with electrophysiology and [Ca2+]i imaging when 340 

‘bubbling’ with O2:CO2 is not feasible), a modified extracellular medium (ES2) that 341 

equilibrates with atmospheric CO2 levels was used. It consisted of (mM) 140 NaCl, 4.7 KCl, 342 

2 NaHCO3, 0.5 NaH2PO4, 0.5 MgSO4, 5 HEPES, 1.5-2.6 CaCl2 (EC1) and 0.1% BSA 343 

(pH=7.4 with NaOH). Secretion data obtained with the two different media were essentially 344 

identical.  345 

All experiments were carried out in a shaking water bath at 37ºC. Groups of 15-20 islets from 346 

at least three mice were pooled together and used in each experiment. When extracellular 347 

[Na+] was lowered to 10 mM, the extracellular solution was compensated with choline 348 

chloride to maintain iso-osmolarity.  349 

All chemicals used in this study were from Sigma (UK) with the following exception: 350 

isradipine and SNX-482 were from Alomone (Jerusalem, Israel); ryanodine, thapsigargin and 351 

CYN154806 were from Tocris (Abingdon, UK) and dapagliflozin was from Cayman 352 

Bioscience (Cambridge, UK). S961 was from Sigma-Aldrich.  353 

Samples were assayed by radioimmunoassay (RIA). The kits for glucagon and somatostatin 354 

were from Millipore (USA) and Eurodiagnostica (Malmö, Sweden), respectively. The 355 

somatostatin RIA from Eurodiagnostica was discontinued and two series of experiments (Fig. 356 
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2f-g) were instead analysed using a RIA from Diasource (P/N RB306RUO; Louvain-la-357 

Neuve, Belgium). The assay provided by the latter supplier indicated higher basal (1 mM 358 

glucose) Sst release and this may be the reason that the fold stimulation produced by glucose 359 

is lower in these experiments. 360 

For unknown reasons, glucagon secretion rates vary between different laboratories and/or 361 

assays. Human glucagon secretion data reported here include only experiments performed in 362 

Oxford. This is the explanation why glucagon secretion at 1 mM glucose now reported is 363 

lower than that presented in a previous study (which included experiments conducted in two 364 

different laboratories)12. Because the experiments were performed in two different 365 

laboratories and over many years, secretion data have been expressed relative glucagon or 366 

somatostatin secretion at 1 mM glucose.  367 

Pancreas perfusion  368 

In situ measurements of glucagon secretion were performed using the perfused mouse 369 

pancreas. Briefly, the aorta was ligated above the coeliac artery and below the superior 370 

mesenteric artery and then cannulated. The pancreas was perfused with KRB containing 371 

glucose and CYN154806 at a speed of 0.24 ml/min using an Ismatec Reglo Digital MS2/12 372 

peristaltic pump. The perfusate was maintained at 37°C using a Warner Instruments 373 

temperature control unit TC-32 4B in conjunction with a tube heater (Warner Instruments 374 

P/N 64-0102) and a Harvard Apparatus heated rodent operating table. The effluent was 375 

collected in intervals of 1 min. Samples were subsequently stored at -80°C. Glucagon content 376 

in perfusate were measured using U-plex glucagon ELISA (Meso Scale Discovery), 377 

according to the manufacturer’s protocol. 378 
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Intracellular [Ca2+] measurements  379 

[Ca2+]i measurements were performed as described previously35. Islets were imaged in a 380 

heated chamber at 37ºC placed on an inverted LSM510 confocal microscope (Zeiss; 381 

Oberkochen, Germany) using a 40X oil objective (NA1.4). The pinhole diameter was kept 382 

constant, and frames of 256x256 pixels were taken every 1-3 s.  383 

Parallel measurement of membrane potential and [Ca2+]i 384 

The electrophysiological measurements were performed in intact islets essentially using the 385 

perforated-patch whole-cell technique in the voltage- or current-clamp modes in δ-cells.  386 

Parallel measurements of [Ca2+]i and membrane potential were performed using an Axioskop 387 

2FS microscope (Zeiss, Oberkochen, Germany) equipped with a 40x/0.8 objective, Lambda 388 

DG-4 exciter (Sutter Instruments, USA) and Orca-R2 cooled CCD camera (Hamamatsu, 389 

Japan). Images were acquired using an open-source Micromanager software (developed at 390 

Ron Vale’s lab, UCSF, San Francisco, USA) and processed using ImageJ. Data analysis was 391 

performed in Igor Pro (Wavemetrics). 392 

Intracellular Na+ and pH measurements 393 

Time-lapse imaging of [Na+]i in dispersed mouse islets was performed on a Zeiss 394 

Axiozoom.V16 microscope. Cells were pre-loaded with 6 μM of Sodium Green (Molecular 395 

Probes) for 30 min at room temperature and imaged at several locations simultaneously. 396 

Sodium Green was excited at 490 nm and emission was collected at 515 nm, using a CCD 397 

camera. Time-lapse images were collected every 60 s and the bath solution was superfused at 398 

60 μl/min, at 34°C. δ-cells were identified by the RFP fluorescence. Images were acquired 399 

using ZenBlue software (Carl Zeiss). Imaging of pHi in GCamP3-expressing δ-cells was 400 

performed on an inverted Zeiss AxioVert 200 microscope equipped with Zeiss 510-META 401 
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laser confocal scanning system, using 40x/1.3 objective. Cells were loaded with 6 μM of the 402 

pH-sensitive dye SNARF-5F for 50 min at room temperature. SNARF-5F was excited at 543 403 

nm and emission was collected at 650 nm and 600 nm. 404 

Statistical analysis 405 

Calcium imaging videos were analysed using a combination of Fiji and IgorPro. Briefly, an 406 

in-house macro was used to auto-detect GCaMP3-expressing regions of interest representing 407 

individual δ-cells. The mean fluorescent intensities of these regions of interest were exported 408 

to IgorPro for individual wave plotting of each δ-cell. The mean fluorescent intensities were 409 

expressed as F/F0 and transformed using a Mexican hat filter and Fourier scaling for baseline 410 

correction. AUC and spike frequency detection methods in IgorPro were then employed to 411 

quantify these parameters for each δ-cell. The AUC and spike frequency data were compared 412 

back to the raw traces visualised in Fiji to confirm accuracy and faithful representation of the 413 

raw data. 414 

GraphPad Prism 6.0 software was used for statistical analysis. Differences between two 415 

groups were assessed by two-tailed unpaired Student’s t-test while for differences between 416 

more groups one-way ANOVA or two-way ANOVA followed by a post hoc test were used. 417 

Data are presented as mean values ± S.E.M.  418 

Data availability 419 

The data that support the findings of this study are available from the corresponding authors 420 

upon request. 421 
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Figure Legends 526 

Figure 1. Regulation of somatostatin secretion by Ca2+. a, Glucose-induced [Ca2+]i 527 

oscillations in 3 representative δ-cells (n=79 cells from 7 mice). b-c, Somatostatin secretion 528 

(b) and frequency of [Ca2+]i oscillations (c) measured at 1, 4 and 20 mM glucose (n=61-79 529 

cells/7 islets/7 mice). 1-way ANOVA with Tukey adjustment. d-g, Frequency of [Ca2+]i 530 

oscillations in the absence or presence of tolbutamide (d; n=48 cells/3 mice; 2-sided t-test), 531 

diazoxide (e; n=13 cells/3 mice, 1-way RM ANOVA with Tukey adjustment), isradipine (f; 532 

n=22 cells/3 mice, 1-way RM ANOVA with Tukey adjustment) and SNX482 (g; n=22 cells/3 533 

mice, 1-way RM ANOVA with Tukey adjustment). *p<0.05, **p<0.005, ***p<0.001 vs 1 534 

mM glucose; †††p<0.001 vs 20 mM glucose. All data are represented as mean ± SEM. 535 

Figure 2. Insulin-induced intracellular Ca2+ mobilization. a, Parallel measurements of 536 

membrane potential (Vm) and [Ca2+]i in a δ-cell recorded at 1 and 10 mM glucose 537 

(representative of 4 experiments). Dotted vertical lines have been inserted to highlight the 538 

lack of correlation between Vm and [Ca2+]i. b, As in (a) but in a δ-cell voltage-clamped at -70 539 

mV. Diazoxide was included as indicated (red). It was ascertained by application of a 500-ms 540 

voltage-clamp pulse from -70 to 0 mV (left) that the [Ca2+]i measurements reflect the voltage-541 

clamped cells (representative of 3 experiments). Scatter graph (inset) summarizes effects of 1 542 

mM glucose (open circle), 20 mM glucose (open square) and 20 mM glucose with 100 µM 543 

diazoxide (open triangle) on [Ca2+]i (AUC). 1-way RM ANOVA with Tukey adjustment, n=4 544 

cells/3 mice. c, (Top): Bar graphs summarising the frequencies of [Ca2+]i oscillations in the 545 

absence or presence of (i) insulin (Ins; 100 nM), (ii) urocortin-3 (UCN3; 100 nM) and (iii) 546 

insulin (100 nM), forskolin (3 µM) and dapagliflozin (100 nM: Ins+Fsk) all in the continued 547 

presence of 20 mM glucose and 100 µM diazoxide. 1-way RM ANOVA with Tukey 548 

adjustment; *p<0.05, **p<0.01, ***p<0.001. The pie charts indicate the % of cells 549 
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responding to each of these conditions (total number of cells are indicated; from 2-3 mice). 550 

iv, Insulin-induced [Ca2+]i oscillations in the presence of forskolin and their suppression by 551 

dapagliflozin. d, Somatostatin secretion measured in the presence of glucose, diazoxide, 552 

insulin and dapagliflozin as indicated (n=5 experiments/3 mice). 1-way ANOVA with Tukey 553 

adjustment; ***p<0.001 vs. 1 mM glucose; ††p<0.01, †††p<0.05, vs. 1 mM glucose. e, 554 

Somatostatin secretion (after normalization to somatostatin content) measured in control and 555 

SIRKO mice at 1 and 20 mM glucose in the absence and presence of dapagliflozin as 556 

indicated (n=5 experiments/3 mice). 1-way ANOVA with Tukey adjustment; *p<0.05, 557 

**p<0.01, †p<0.05. f, Somatostatin secretion at 1 and 20 mM glucose (as indicated) and 558 

increasing concentrations of dapagliflozin (n=10 experiments/7 mice). The curve was derived 559 

by fitting the function y = base – (base-min) /(1 + (x50/x)^rate) to the mean values (base =2.5, 560 

min=1.4, x50 = 10 nM and rate=-1). g, Somatostatin secretion at 1 and 20 mM glucose and 561 

phlorizin (50 µM) as indicated (n=7-10 experiments/7 mice). 1-way ANOVA with Tukey 562 

adjustment; *p<0.05, **p<0.01 vs. 1 mM glucose; †p<0.01 vs. 20 mM glucose. h, glucagon 563 

secretion in the presence of glucose, dapagliflozin and CYN154806 as indicated (n=6-9 564 

experiments/3 mice). 1-way ANOVA with Tukey adjustment; ***p <0.0005 vs. 1 mM 565 

glucose; ††p<0.01 vs. 20 mM glucose; ‡‡p<0.01 vs. 20 mM glucose with 12.5 µM 566 

dapagliflozin. i, Somatostatin secretion measured in the presence of glucose, αMDG and 567 

[Na+]o as indicated (n=8 experiments/3 mice). 1-way ANOVA with Tukey adjustment; ***p 568 

<0.0005 vs. 1 mM glucose; †p<0.05, vs. 1 mM glucose with 19 mM αMDG and 140 mM 569 

[Na+]o; ‡‡‡p<0.01 vs. 20 mM glucose with 140 mM [Na+]o. All data are represented as mean 570 

± SEM. 571 

 572 

Figure 3. Elevation of cytoplasmic Na+ stimulates somatostatin release. a, Effects of αMDG 573 

applied at 1 mM glucose on δ-cell [Ca2+]i and impact of lowering [Na+]o as indicated (72 of 574 
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182 cells in 8 islets from 6 mice). b, As in (a) but αMDG applied in islets pretreated for 90 575 

min with thapsigargin (oscillations observed in 4 of 34 cells in 3 islets from 3 mice). c, 576 

Effects of αMDG on [Na+]i measured in dispersed δ-cells applied at 1 mM glucose in the 577 

absence and presence of 100 nM dapagliflozin (Dapa) as indicated. Trace representative of 578 

αMDG-responding δ-cells (53 of 136 cells). The fluorescence (F) has been normalised to the 579 

initial signal (F0) in the subset of cells responding to αMDG. d, Bar graph summarising 580 

effects of αMDG and dapagliflozin on [Na+]i. Mean values ± S.E.M. in 53 of 136 cells from 4 581 

mice (only the subset of cells responding to αMDG were included in these analyses). 582 

*p<0.05. e-f, As in c-d but in the presence of 100 nM insulin and 1 nM dapagliflozin (Dapa). 583 

The dotted line shows data for insulin-unresponsive cells. Data in f are mean values ± S.E.M. 584 

in of 36 insulin-responsive δ-cells from 2 mice. g, [Ca2+]i measured in a δ-cell induced by 585 

monensin (50 μM) applied at 1 mM glucose and lack of effects of a cocktail of diazoxide (0.1 586 

mM), SNX482 (100 nM) and isradipine (2.5 μM) (shaded area). h, Plasma K+ measured in 587 

mice before and 45 min after intraperitoneal injection of 0.75 U/kg body weight insulin. 588 

Paired t-test; *p<0.05 (n=5 mice). Plasma glucose fell from 7.4±0.6 to 3.7±0.7 mM (n=5 589 

mice) (data not shown). i-j, As in c-d but measuring the effect of lowering [K+]o from 4.7 to 590 

2.7 mM. Bar graph in (j) shows mean value ± S.E.M of 231 cells from 4 mice. All cells were 591 

included in this analysis. Paired t-test; ***p<0.001. k, [Ca2+]i oscillations induced at 1 mM 592 

glucose by lowering [K+]o to 2.7 mM (representative of 16 cells in 3 islets from 2 mice). All 593 

data are represented as mean ± SEM. 594 

 595 

Figure 4. Effects of hypokalaemia and type-2 diabetes on glucagon and somatostatin 596 

secretion. a-b, Somatostatin (a) and glucagon secretion (b) at 1 mM (black) and 6 mM (red) 597 

glucose at the indicated [K+]o. 1-way ANOVA with Tukey adjustment; †p<0.05; ††p<0.01; 598 

†††p<0.001 vs. 1 mM glucose at 4.7 mM [K+]o. Effects of increasing glucose from 1 to 6 mM 599 
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is statistically significant at 4.7, 3.7 and 2.7 mM [K+]o; *p<0.05; **p<0.01 and ***p<0.001. 600 

Mean values ± S.E.M of n=12 experiments/6 mice. c, Glucagon secretion at 1 or 6 mM 601 

glucose and at 4.7 or 1.7 mM [K+]o in the absence or presence of CYN154806 (CYN) as 602 

indicated. 1-way ANOVA with Tukey adjustment; ***p<0.001 vs. 1 mM glucose at 4.7 mM 603 

[K+]o; †††p<0.001 vs. 1 mM glucose at 1.7 mM [K+]o; ‡‡p<0.005 vs. 1 mM glucose at 1.7 604 

mM [K+]o in the presence of CYN154806 (n=9 experiments/4 mice). d, Somatostatin 605 

secretion in islets from control (CTL) and hyperglycaemic Fh1βKO (KO) mice at 1 and 20 606 

mM glucose (n=4-5 using islets from 4 mice). 1-way ANOVA with Tukey adjustment; 607 

**p<0.01 vs 1 mM glucose; †p<0.05 vs. 1 mM glucose in CTL islets. e, Glucagon secretion 608 

from the perfused mouse pancreas of CTL (n=5) and hyperglycaemic Fh1βKO (KO, n=4) 609 

mice at 1 mM glucose in the absence and presence of CYN154806 as indicated. 1-way 610 

ANOVA with Tukey adjustment; *p<0.05 for the effect of CYN154806; †p<0.05 for 611 

difference between Fh1βKO and wild-type pancreases at 1 mM glucose. f, Somatostatin 612 

secretion at 1 and 20 mM glucose in islets from non-diabetic (ND, n=32 donors) and type-2 613 

diabetic donors (T2DM, n=7 donors). 1-way ANOVA with Tukey adjustment; ***p<0.001 614 

vs. 1 mM glucose. ns (not significant), p=0.57. g, Glucagon secretion measured at 1 mM 615 

glucose in islets from ND (n=50 donors) and T2DM donors (n=12 donors). 1-way ANOVA 616 

with Tukey adjustment; *p<0.05, **p<0.01 vs. 1 mM; †p<0.05 vs. ND. h, Effect of the 617 

SSTR2 antagonist CYN154806 on glucagon secretion in islet preparations from three donors 618 

with T2D. Note that CYN154806 increases glucagon secretion in the two preparations with 619 

low glucagon secretion and that it had no effect on the preparation with high glucagon 620 

secretion. The shaded area and superimposed black line indicate glucagon secretion at 1 mM 621 

glucose in islets from non-diabetic donors (mean secretion ± S.E.M. in 41 preparations). i, 622 

Schematic summarising the stimulus-secretion coupling in δ-cell. Glucose uptake (via 623 

GLUT1 or 3) leads to stimulation of glucose metabolism (glycolysis and mitochondria) and 624 
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an increased cytoplasmic ATP/ADP ratio. This closes KATP channels in the plasma 625 

membrane, producing membrane depolarization and activation of voltage-gated Ca2+ 626 

channels (VGCC). Ca2+ influx associated with electrical activity triggers further increase in 627 

cytoplasmic Ca2+ ([Ca2+]i) by Ca2+-induced Ca2+ release (CICR) in the sarco/endoplasmic 628 

reticulum (sER) by activation of ryanodine receptor 3 (RyR3) Ca2+ release channels. The 629 

resultant increase in [Ca2+]i triggers somatostatin secretion. Inhibitors of the Ca2+ ATPase 630 

(‘Ca2+ pump’) of the sER (SERCA inhibitors; e.g. thapsigargin) inhibit somatostatin secretion 631 

by depleting sER of Ca2+. Glucose also stimulates somatostatin secretion by elevation of 632 

intracellular Na+ ([Na+]i) (possibly mediated by SGLTs) and thereby increases [Ca2+]i via 633 

stimulation of intracellular Na+-Ca2+ exchange (NCLX) and thereby triggers CICR 634 

independently of electrical activity. Inhibition of the Na+/K+ ATPase (by low [K+]o) also 635 

increases [Na+]i and triggers CICR.  636 



10 min

0
.2

 F
/F

0

0
.5

 F
/F

0

10 min

1 1 1 
4 4 4 

20 20 20 

 

b

a

c

e

0
.5

 F
/F

0

10 min

f g

d

[Glucose] (mM)

Vergari et al. Figure 1

Glucose (mM)

  
  

 S
o

m
a

to
s

ta
ti

n
 

(n
o

rm
a

li
z
e

d
 t

o
 1

G
)

0

5

15

1 4 20

*

**

10

1 4 20

-0.5

1.0

2.5

Glucose (mM)

-1
  

F
re

q
u

e
n

c
y

 (
m

in
) ***

*

0.0

2.0

1.5

0.5

Glucose 
Isradipine 

-1
 F

re
q

u
e
n

c
y
 (

m
in

)

(mM)      1            20          20        
(mM)      -              -            20           

***

†††

-1

0

1

2

3

4

 
Glucose 
SNX-482 

-1
  

  
F

re
q

u
e

n
c

y
 (

m
in

)

(mM)      1            20           20        
(nM)       -             -           100           

-2

0

2

4

6

 

***

 Glucose 
Diazoxide 

  

-1
F

re
q

u
e
n

c
y
 (

m
in

) ***

(mM)    1           20       20         
(mM)    -            -        100          

4

3

2

1

0

-1

††† 

 Glucose 
        Tolbutamide 

***2.5

-1
  
 F

re
q

u
e
n

c
y
 (

m
in

)

2.0

1.5

1.0

0.5

0.0

-0.5

1           1       (mM)    
(mM)          -                    0.2

 



Ins
0.00

0.08

0.16

S
p

ik
e

s
/m

in

UCN3
0

0.1

0.2

0.3

Ins
Dapa

0

0.2

0.4

0.6
*** ** * ** *** **

27%9%17%

Non-Responsive Cells Responsive Cells

7
6
 c

e
lls

3
4
 c

e
lls

5
2
 c

e
lls

100 nM Insulin

Ins UCN3

- + -
- + +
- - +- + -

Vergari et al. Figure 2

0

2

4

6

8

10

(n
o

rm
a
li
z
e
d

to
1
G

)

† † †

p=0.06

††

-                 -                 

20
  0

  -20
  -40
  -60
  -80

V
 (

m
V

)
m

2+[Ca ]i

10 
1 

  10 min2
5

 F
/F

0

       

V  (mV)m

     0
  -70

5
 F

/F
0

  2 min  5 s

1 

20

100 mM Diazoxide

2+[Ca ]i

 

[Glucose] (mM)

[Glucose] (mM)

a b c

d e

hg

Insulin (nM)     

Glucose 

Glucose 

Dapagliflozin (nM)     

Dapagliflozin 

Diazoxide (mM) 

0

5

10

15

20

  
  
S

o
m

a
to

s
ta

ti
n

(n
o

rm
a
li
z
e
d

 t
o

 1
G

) 
  
  
S

o
m

a
to

s
ta

ti
n

(n
o

rm
a
li
z
e
d

 t
o

 1
G

) 

 �
��
D

S
o

m
a
to

s
ta

ti
n

(n
o

rm
a
li
z
e
d

 t
o

 1
G

) 

-         
-         

-         
-         

-       
-       -       

100     100                          

(mM)    

(mM)    

1        

1        1        

20      

20      

20       20       

20       

20                
-         -        200   200      200                         

(mM)     12.5                          

†††

†

††

***

**

*

Glucose 
Dapagliflozin 

Ctrl
SIRKO

(mM)        1                 1                20                20          
(mM)         -               12.5               -               12.5                         

  
  
S

o
m

a
to

s
ta

ti
n

**

  
  
  
 G

lu
c
a
g

o
n

(n
o

rm
a
li
z
e
d

 t
o

 1
G

) 

 

Glucose (mM)        1     20        20          20       20           
CYN154806 (mM)             -                 -                 -                 1                1 

Dapagliflozin (mM)             12.5   -    12.5           

0.0

0.5

1.0

1.5

2.0

***

 

  

*

†

*

10 mins

2
 F

/F
0

Ins+Fsk

100 nM Dapa. 

Ii ii iii

iv

0 1 10 100 1000

2.5

2

1.5

1

f

0

2

4

6

8

10

Phlorizin (mM)  -          -          50        -
Tolbutamide (mM)  -         -           -        0.3

 

Ii

Glucose 
��������aMDG 

***

***

(mM)   1        1        1        1        20     20                   

  
  
S

o
m

a
to

s
ta

ti
n

(n
o

rm
a
li
z
e
d

 t
o

 1
G

) 

(mM)          -           19     19              -                               
+ [Na] o (mM)   140   10      140    10      140    10                                

†

‡‡‡

0

2

4

6

0.0

0.5

1.0

1.5

A
U

C

‡‡

*

**

+Fsk



20 min

 Monensin

Diazoxide
Isradipine
SNX482

2+[Ca ]i

2+[Ca ]i

b

g h

k

Vergari et al. Figure 3

 

 

 

a

2 min

fe

0

2

4

6

8 *

Insulin             -           +
i j

10 min

2.7 
4.74.7

1.00

1.02

1.04
***

+
[N

a
]

(F
/F

)
i 

0

2.7     4.7

1.00

1.02

1.04

Insulin (nM)         
Dapa (nM)   

*

*

#

100    -         -

    -         1    -         
100
1

Insulin Insulin

Dapa

20 min

***dc

20 min

0
.2

 F
/F

0

1.00

1.05

1.10

αMDG (mM)         
Dapa (nM)       -         100    -         

    -         1919

2+[Ca ]i

2+[Ca ]i

+[Na ]i

19 mM αMDG 19 mM αMDG
19 mM αMDG+

70 mM K

+10 mM [Na ]o

20 min

0
.2

 F
/F

0

2
.5

 F
/F

0

2
.5

 F
/F

0

20 min

0
.0

2
 F

/F
0

5
 F

/F
0

+[Na ]i

+
[N

a
]

(F
/F

)
i 

0

+
[N

a
]

(F
/F

)
i 

0

+[K ] (mM)o 

+[Na ]i

0
.0

5
 F

/F
0

+
[K ] (mM)o 

+
P

la
s
m

a
 [

K
](

m
M

)
 

+2.7 mM [K ]o

4.7

2
 F

/F
0



+[K ]  (mM) 0

S
o

m
a
to

s
ta

ti
n

 
(f

m
o

l/
is

le
t/

h
)

g N=3 human (T2D)

CYN (μM)  -                 1

***

**
*

†p=0.06

0.0

0.5

1.0

1.5

2.0

0

2

4

6

8

10

4.7

1 mM glucose
6 mM glucose

3.72.71.7
+[K ]  (mM) 0

S
o

m
a
to

s
ta

ti
n

 
s
e
c
re

e
ti

o
n

 
(n

o
rm

a
li
s
e
d

)

G
lu

c
a
g

o
n

(p
g

/i
s
le

t/
h

)

0

5

10

15

 

+
 1.7 mM [K ]  0

1 mM CYN

Glucose (mM) 
1         6          1         6            1        6

G
lu

c
a
g

o
n

 
s
e
c
re

ti
o

n
 (

n
o

rm
a
li

s
e
d

)

G
lu

c
a
g

o
n

 
s
e
c
re

ti
o

n
 (

n
o

rm
a
li
s
e
d

)

0.0

0.5

1.0

1.5
†††

***

***

‡‡

+
↓ [K] o

Somatostatin release

+
K

+
Na

2+
↑ [Ca ]i

Metabolism

channel closure

Mitochondrion 

RyR3
2+

Ca

Membrane
depolarization

↑ Insulin

a

c

f

a

b

Vergari et al. Figure 4

ND T2D

G
lu

c
a
g

o
n

(p
g

/i
s
le

t/
h

)

4.73.72.71.7
 

1 mM glucose
6 mM glucose

0

10

20

30

1         20          1         20          

d e

 

ND T2D

1         20          1         20          

ns

0

1

2

3

4

* ** **

††

†††

* * ***
†

†††
†††

†††

†

**

†

i

CTL KO
1         20          1         20          

0.00

0.05

0.10

0.15

0.20

0.25

S
o

m
a
to

s
ta

ti
n

 
(f

m
o

l/
is

le
t/

h
)

Glucose

NCLX

G
lu

c
a
g

o
n

(p
g

/m
l)

CYN (μM) 0.1 0.1

h

-                 -                 

†

*
50

100

150

0

CTL KO


	Page 1
	Page 2
	Page 3
	Page 4
	Article File
	Figures 1-4

