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Abstract

The rhythmic nature of insulin secretion over the 24h cycle in pancreatic islets has been

mostly investigated using transcriptomics studies showing that modulation of insulin secre-

tion over this cycle is achieved via distal stages of insulin secretion. We set out to measure

β-cell exocytosis using in depth cell physiology techniques at several time points. In agree-

ment with the activity and feeding pattern of nocturnal rodents, we find that C57/Bl6J islets

in culture for 24h exhibit higher insulin secretion during the corresponding dark phase than

in the light phase (Zeitgeber Time ZT20 and ZT8, respectively, in vivo). Glucose-induced

insulin secretion is increased by 21% despite normal intracellular Ca2+ transients and depo-

larization-evoked exocytosis, as measured by whole-cell capacitance measurements. This

paradox is explained by a 1.37-fold increase in beta cell insulin content. Ultramorphological

analyses show that vesicle size and density are unaltered, demonstrating that intravesicular

insulin content per granule is modulated over the 24h cycle. Proinsulin levels did not change

between ZT8 and ZT20. Islet glucagon content was inversely proportional to insulin content

indicating that this unique feature is likely to support a physiological role. Microarray data

identified the differential expression of 301 transcripts, of which 26 are miRNAs and 54 are

known genes (including C2cd4b, a gene previously involved in insulin processing, and clock

genes such as Bmal1 and Rev-erbα). Mouse β-cell secretion over the full course of the 24h

cycle may rely on several distinct cellular functions but late night increase in insulin secretion

depends solely on granule insulin content.
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Introduction

Links between circadian dysfunction and Diabetes has been evidenced in several models

where clock genes were either mutated to knocked out [1, 2]. A complex picture of circadian

gene expression in pancreatic islets has emerged, some KO models showing impairment of β-

cell mass [2, 3] and distal stages of insulin secretion as the underlying pathophysiological

mechanisms. However, direct functional evidence remains scarce. Recently, new mechanisms

controlling the beta cell output across the 24h cycle was unraveled using in vivo and functional

assays. One study reported that ATP production via modification of Ucp2 expression modifies

insulin secretion [4] although islet insulin content was not measured. In contrast, others have

established that the insulin genes display circadian expression and may underly the day/night

rhythmicity of Glucose Stimulated Insulin Secretion (GSIS) [5]. Which cellular processes are

at play in the unaltered β-cell during the 24 hour cycle thus remains an open question, and

measures of metabolism and exocytosis that do not rely on measures of insulin content are

needed.

Here, we show that in the absence of exocytosis or metabolic upregulation, mouse β-cells

are programmed to increase insulin content per granule during late night.

Material and methods

Animal husbandry

Experiments were performed in agreement with the European Directive 2010/63/UE and

approved by the French Ministry of Research and the local ethic committee of the University

of Burgundy (C2EA Grand Campus Dijon N˚ 105). 10-week-old C57Bl/6J (Charles River)

mice were housed on a 12h light/dark cycle with the light period starting either at 7:00 or at

19:00. In both cases, the time of lights on defines Zeitgeber (ZT) 0. Mice had free access to

food and water at all times. After a 4-weeks acclimatization period, mice were killed at 15:00

by cervical dislocation under light (ZT8 and ZT12) or dark conditions (ZT20) and islets iso-

lated by collagenase digestion and handpicking, followed by culture for 24h as described previ-

ously [6]. All further experiments unless otherwise stated were performed at 15:00 or on a 4h

window around that time (for electrophysiological and fluorimetric experiments). The nor-

mal-cycle mouse islet group is subsequently referred to as the ZT8 group, whilst the inverted

cycle mouse islets are referred to as ZT20. An additional time point was investigated (ZT12)

for exocytosis. To this effect, mice kept on a normal cycle were killed at 15:00 (ZT8 indepen-

dent control) and 19:00 (ZT12), and islets were cultured for 24h before experiments.

Measurement of hormone secretion

Islets were cultured in RPMI 1640 together with 11mM G based on recommended publica-

tions [7, 8]. Static measurements of insulin secretion were performed in 96 well plate format

plates using an extracellular medium containing (in mM): 120 NaCl, 4.7 KCl, 25 NaHCO3, 1.2

KH2PO4, 1.2 MgSO4, 10 HEPES (pH 7.4 with NaOH), 2.5 CaCl2, 0.5 mg/ml BSA free fatty acid

free. Islets were kept one hour at 5 mM G and the supernatant was replaced with test solutions

containing either 2.8 or 16.7 mM G for another hour. The supernatant was collected and to

determine total content, hormones were extracted from pellets using 95:5 ethanol:acetic acid.

Insulin, proinsulin and glucagon were measured using commercial ELISA kits (Alpco, Merco-

dia and Millipore, respectively) on both supernatant and pellet.

Mechanisms of insulin secretion over the 24h cycle
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Measurement of DNA content

Total DNA content was measured on islets at ZT8 and ZT20 using Qubit dsDNA-HS assay kit

(ThermoFisher) according to the manufacturer’s instructions.

Intracellular Ca2+ measurements

Intracellular calcium concentration ([Ca2+]i) was assessed on islets using a Till photonics sys-

tem fitted on an upright inverted IX 70 Olympus microscope, allowing ratiometric measure-

ments with fura-2AM (Molecular Probes) as described previously [9].

Whole-cell measurements of Ca2+ currents and exocytosis

For patch-clamp measurements, islets were dissociated into single β-cells. Insulin-secreting β-

cells were identified based on their larger size reflected by their higher capacitance (>5.5 pF)

and complete inactivation of the Na+ current at -70 mV [10]. Whole-cell Ca2+ currents (using

Ba2+ as the charge carrier to prevent Ca2+-mediated inactivation of the channels and to

increase the magnitude of the current) and exocytosis (Ca2+ present in the extracellular solu-

tion) were recorded using an EPC-10 amplifier and the Pulse software (Heka Electronics, Lam-

precht/Pfalz, Germany) as described previously [11].

Electron microscopy

Groups of 50 isolated islets were fixed in 2.5% glutaraldehyde and 2.5% paraformaldehyde in

cacodylate buffer (0.1 M, pH 7.4) and washed in cacodylate buffer for further 30 minutes. Sam-

ples were postfixed in 1% osmium tetroxide in 0.1M cacodylate buffer for 1 hour at 4˚C and

stained with 2% uranyl acetate for 1h at 4˚C. The samples were dehydrated through graded

alcohol (50, 70, 90, and 100%) and propylene oxide. Samples were embedded in Epon 812.

Ultrathin sections were cut at 70nm and contrasted with uranyl acetate and lead citrate and

examined at 70kV with a Morgagni 268D electron microscope. Images were captured digitally

by Mega View III camera (Soft Imaging System) and analysed using ImageJ.

qRT-PCR and microarray studies

Groups of 20 islets were washed by centrifugation in cold PBS (Ozyme, Saint-Quentin-en-Yve-

lines) and immediately homogenized in lysis solution (RLT buffer provided by mRNA extrac-

tion kit), frozen and stored at -80˚C until mRNA extraction. Total islet mRNA was extracted

using the RNeasy Micro kit (Qiagen, Courtabœuf) according to the manufacturer’s protocol.

Quantity and quality (RNA quality indicator; RQI) of total RNA were checked through the

Experion automated electrophoresis system (Bio-Rad, Marne la coquette) and software. Sam-

ples with a RQI above 7 were accepted. cDNAs were synthesized using the QuantiTect Reverse

Transcription Kit (Qiagen, Courtabœuf). Reverse transcription were performed in triplicate.

Real time RT-PCR was performed with pre-designed Taqman Gene expression assays (Life

Technologies, Saint Aubin). Primers used for qRT-PCR are detailed in S1 Table and listed

here: Rev-erb α (alias Nr1d1; Mm00520708_m1), Rev-erb β (alias Nr1d2; Mm00441730_m1),

Bmal1 (alias Arntl; Mm00500226_m1); Ins1 (Mm01950294_s1); Ins2 (Mm00731595_gH); Glu-
cagon (Mm01269055_m1) and 36B4 (alias Rplp0; Mm00725448_s1). The 20μl PCR reactions

contained 2μl cDNA, 10μl Taqman Fast Advanced Master Mix (Life technologies, Saint

Aubain), 1μl Taqman Gene expression Assay and 7μl H2O. Samples were analyzed on the Ste-

pOnePlus Real-Time PCR system (Applied Biosystem, Saint Aubin). Cycling parameters for

real-time RT-PCR were as follows: 50˚C for 2 minutes, 95˚C for 10 min followed by 45 cycles

of 95˚C for 15 seconds and 60˚C for 1 minute. Relative expression levels were determined by
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StepOne software using comparative CT method to normalize target gene mRNA to 36B4 as

published before [12].

In a separate group of experiments, samples with a RQI above 7.5 were used for microarray

analysis. Labeled and fragmented cRNA was hybridized to the Affymetrix 430 2.0 whole

mouse genome microarray and processed on an Affymetrix GeneChip Fluidics Station 450

and Scanner 3000 (Affymetrix).

Statistical analysis

Statistical analysis was performed using two-tailed t-test, ANOVA repeated measures or using

a Mann-Whitney U-test (ultrastructural data) where appropriate using the statistical package

“R”.

Results

Validation of experimental model via rhythmic Rev-erbα and Bmal1 gene

expression profiles

The circadian system of pancreatic islets is totally preserved in the first few days of culture

without need for a synchronization pulse [13]. We verified and confirmed the cyclic expres-

sion of Rev-Erb α and β (Nr1d1 and Nr1d2) and Bmal1 (Arntl) by qRT-PCR on islets cultured

for 24h and sampled every 6h (schematics in Fig 1A). The two Rev-erb isoforms peaked at ZT8

whilst Bmal1 peaked at ZT20 as previously established [5] (Fig 1A). We subsequently focused

on time points with maximal and minimal relative expression of Rev-erb α, ZT8 and ZT20,

respectively. Since islet culture duration has a significant effect on β-cell Ca2+-channel proper-

ties (Figures A and B in S1 Fig), mice were housed in normal or inversed cycle conditions as

shown in Fig 1B schematics to standardize culture length (24h). Relative expression of the

aforementioned circadian genes (Fig 1B) followed the same pattern as in Fig 1A, consistent

with an entrainment of the clock in the islets under both light/dark cycles, and validating our

experimental paradigm.

Increased insulin secretion at ZT20 is not due to [Ca2+]i, Ca2+ channel

properties and exocytosis

Both basal and GSIS were upregulated during the corresponding mouse awake/activity phase

(Fig 1C). Basal insulin release was increased by 100% and GSIS by 21% (p<0.05). We mea-

sured β-cell intracellular Ca2+ concentration ([Ca2+]i) in cultured islets from normal and

inverted cycle mice in response to glucose (Fig 2A). Both islet sources responded to 16.7mM

glucose, with similar increases in [Ca2+]i and fast oscillation patterns. The magnitude and gat-

ing of the Ca2+ currents were identical at ZT8 and ZT20 in the physiological range of β-cell

electrical activity (-70 to -10 mV) (Fig 2B). Unlike mouse β-cells, recent studies on human

islets have highlighted that Na+ channels participate in insulin secretion [10]. We characterized

Na+ currents but found no difference between the two groups (Fig 2C). Cell membrane capaci-

tance was not different at ZT8 and ZT20 before the depolarization train (6.94±0.2 and 7.17

±0.3 pF at ZT8 and ZT20, respectively p = 0.52). The total increase in cell membrane capaci-

tance elicited by the train was ~130 fF in both ZT8 and ZT20 (Fig 2D).

Higher intragranular content correlates with β-cell insulin content at ZT20

Ultrastructurally, islets from both ZT8 and ZT20 appeared identical (Fig 3A). The mean area

of each type of granule (mature–presence- and immature -absence- of a dense core) were iden-

tical (0.127±0.07 μm2 and 0.1337±0.06 μm2 for immature granules and LDCV vesicles,
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respectively). Granule and dense core sizes were identical between ZT8 and ZT20 islets (Fig

3B). In agreement with capacitance data, the density of granules was similar between ZT8 and

ZT20 islets (Fig 3C). Insulin content was increased 37% at ZT20 compared to ZT8 (Fig 3D).
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Fig 1. Expression levels of main circadian genes and corresponding Glucose Stimulated Insulin Secretion (GSIS) at peaks of expression. A: 24h expression profile

of rev-erb α and β and Bmal1 in islets cultured for 24h and sampled every 6h (except first two sample times collected at 15:00 (ZT8) and 19:00 (ZT11)). B: Expression
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from ZT8 and ZT20 islets. Grey bars = ZT8; Dark bars = ZT20; N = 20–60 experimental replicates across 6 animals per ZT. �P<0.05 using a t-test.

https://doi.org/10.1371/journal.pone.0193882.g001
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Interestingly, glucagon content was decreased by 34% (Fig 3E), and these changes were not

correlated to islet DNA content (Fig 3F). Proinsulin content was marginally reduced (-7%, not

significant) at ZT20 (Fig 3G).

Islet gene expression profiles at ZT8 and ZT20

A total of 301 genes were differentially expressed between ZT8 vs ZT20 islets (S1 Table,

GSE109882). A total of 199 mRNA transcripts had higher levels at ZT8 (between 1.3- to

2.71-fold more than ZT20) and 102 had decreased levels (>1.3 fold). Given the focus of our

study and the pertinent current literature, genes involved in exocytosis, insulin production

and circadian rhythms were summarized in Fig 4A. Circadian genes Rev-erbα,β and Bmal1
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animals for ZT8 and ZT20, respectively. B: Peak current (I)-voltage (V) relationship for voltage-gated Ca2+ currents recorded from single ZT8 or

ZT20 β-cells using Ba2+ in the extracellular solution as a surrogate to Ca2+ during depolarizations from -70 mV to membrane potentials between -60
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https://doi.org/10.1371/journal.pone.0193882.g002
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were differentially expressed as in Fig 1B. Several other genes were also detected. Specifically,

C2cd4b, a gene involved in insulin maturation, was identified. In agreement with our capaci-

tance data, no exocytotic genes were differentially expressed. In addition, Ins1, Ins2 and gluca-
gon and the subunits of the voltage-gated Calcium channels were not differentially expressed,

what was subsequently confirmed by qRT-PCR (Fig 4B).

per islet± S.E.M. for ZT8, n = 19 or ZT20, n = 23 replicates across a minimum of 3 mice per ZT. G: Proinsulin islet

content in n = 57 for ZT8 islets (across 6 mice) and n = 57 for ZT20 islets (across 6 mice). Grey bars = ZT8; Dark

bars = ZT20.

https://doi.org/10.1371/journal.pone.0193882.g003
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Exploration of exocytosis at ZT12

To verify if insulin exocytosis was upregulated at the beginning of the feeding period, capaci-

tance measurements were repeated at ZT8 and ZT12. We found similar increases in depolari-

zation-evoked capacitance measurements for ZT8 and ZT12 islets (Fig 5).

Discussion

Several reports showed that the expression of genes involved in mitochondrial metabolism,

exocytosis, granule processing and β-cell proliferation is circadian in both mouse [2, 4, 14, 15]

and human [16] islets. Whilst changes in β-cell mass are outside the scope of the present study,

our data argue that at certain points of the 24h cycle, β-cells adjust their daily secretory output

solely via the modulation of intragranular insulin content. It is the first time that insulin exocy-

tosis is measured directly by precise electrophysiological techniques at different time points of

the 24h cycle. It is thus significant that despite a 21% increase in insulin secretion between ZT8

and ZT20, no changes in the number of fusion events were detected. Likewise, calcium

fluorimetry and precise analysis of voltage-gated calcium channels via electrophysiology and

qRT-PCR showed that glucose metabolism and ATP induced closure of Ca2+ channels could

not account for these differences. Instead, as evidenced by ultrastructural data and islet insulin

content, the modulation of insulin production and packaging underlined these effects. Insulin

content was measured using an elisa kit that does not cross react with C-peptide or pro-insulin.

Immunoreactive insulin is matured in granules so what we are measuring is whole granule

insulin content. This is why the lack of differences in granule number measured by EM is so

important. The size of the granules measured by EM is also important in relation to capaci-

tance measurements which are actually measuring the size of vesicle fusing with the plasma

membrane. The lack of differences in capacitance measurements at ZT8 and ZT20 in full view

of the ultrastructural data (same size) unambiguously argues that the same number of vesicles

are fusing at ZT8 and ZT20. If the granule density and size are the same at ZT20 and ZT8,

whilst insulin is augmented at ZT20, it can only mean that insulin granular content is

increased at this time point.

It is important to remember these findings were established in islets cultured for 24h. At

this stage, it can be anticipated that the metabolic status of islets is identical between the two

groups, which ensures that the resulting phenotype is only due to the 24h cycle rather than

metabolic cues. The beta cell is thus capable, over time, of changing the amount of insulin lib-

erated by each granule, making the number of exocytotic events perhaps less relevant in con-

trolling insulin release at this time point. This is further supported by the fact that both basal

and glucose induced insulin secretion were increased between ZT8 and ZT20. Compelling evi-

dence that modulation of insulin content is physiologically relevant is the fact that glucagon

content followed the inversed pattern.

The insulin gene has equally been reported to be circadian in expression [5] or remain sta-

ble [2]. Using a siRNA against the clock gene Rev-erb α, insulin expression was marginally

upregulated whilst insulin content was concomitantly reduced [15]. Interestingly, in human

islets from normal and diabetic donors, PER2, PER3 and CRY2 expression levels correlated

positively with insulin content [17]. On the other hand, a β-cell specific Bmal1 KO bore no

effect on insulin content [18]. These discrepancies may come from 1) lack of power in detect-

ing the effect since measuring islet insulin content reliably can be challenging making it prone

to “false negatives”; and 2) the fact that it has different kinetics than gene expression. The latter

is illustrated by previous studies [5] showing that Ins1 and Ins2 transcriptional activities peak

briefly at ZT12, whilst increase in blood insulin levels are only detected 4h later. Accordingly,

Ins1 and Ins2 mRNA transcripts have low expression at the two time points used in our study
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(ZT8 and ZT20); and proinsulin levels were only marginally reduced at ZT20, suggesting that

insulin processing had most likely peaked just beforehand. C2cd4b, a gene implicated in diabe-

tes and proinsulin to insulin conversion via a genome-wide association study [19], was differ-

entially expressed but the cellular function and relevance of C2cd4b to diabetes has yet to be

validated [20].

The aim of our paper was to investigate the physiological mechanisms underlying the mod-

ulation of insulin secretion between day and night. Our transcriptomic data is only a snapshot

of two time points and should be regarded as a minor addition to the wealth of data in tran-

scriptomic studies done over the full cycle. Nevertheless, in addition to C2cd4b, we identified

two additional genes regulated over time, such as the hemoglobin (Hb) genes. Hb expression

has been reported in nonerythroid cells, but it is the first time that it is reported in islet cells.

Coincidentally, ZT8 and ZT20 correspond to the maximal and minimal relative expression of

Rev-erb α, respectively. REV-ERBs function as physiological sensors of intracellular heme and

the intracellular heme undergoes circadian regulation [21] allowing REV-ERB proteins to

modulate repression of their target genes and to shape the amplitude of the circadian rhythm.

Interestingly, the ~4h delay between insulin genes expression and availability [5] suggests

that mice would require another mechanism for the secretion of appropriate amounts of insu-

lin at ZT12 (i.e. the beginning of the feeding period). Could this be exocytosis? Whole genome

transcriptomics over the circadian cycle have indeed detected exocytotic or granule trafficking

genes as being differentially expressed [2, 14, 15, 22]; however, it has long been established that

insulin sensitivity is drastically increased at ZT12 in rats and that insulin secretion rates in vivo
only augment throughout the day in humans [23]. Our additional measurements show that

exocytosis is not upregulated at ZT12. If anything, a trend for reduction in exocytosis was

apparent in the first steps of depolarization at ZT12. It should be noted that capacitance mea-

surements are done in a cell configuration that clamps cAMP and ATP levels. Effects on exocy-

tosis mediated by these biological active molecules are thus not measured, and the recent

publication of Ucp2 as a circadian gene together with measures of ATP production showing a

circadian pattern may be pertinent at ZT12 [4]. Ucp2 involvement was mainly studied at ZT4

and ZT14. At the main time points of our experimental paradigm, ATP is however unlikely to

play a role: After verifying that Voltage gated Ca2+ channels electrophysiological properties

were unaffected at ZT8 and ZT20, we measured glucose induced [Ca2+]i transients which are

indirectly linked to ATP production. The lack of differences in the amplitude or period of fast

Ca2+ oscillations argues that mitochondrial function is identical at ZT8 and ZT20. We have

previously published that mitochondrial reactive oxygen species are obligatory signals for glu-

cose induced insulin secretion. These signals do not require ATP for modulating insulin secre-

tion and impact on [Ca2+]i [24]. In this context, modulation of Ucp2 gene expression could

have unsuspected effects on ROS production independent of ATP and impact on insulin secre-

tion. But it is important to remember that basal insulin secretion (not just GSIS) was also

increased at ZT20 and this is more likely due to changes in granule insulin content especially

since [Ca2+]i levels, granule density and exocytosis were unaffected. Furthermore, the 21% late

night increases in insulin secretion (ZT20) would be fully accounted for by the 37% increase in

insulin content and would not require another mechanism.

Our results also call for a better understanding of how insulin content regains basal values

during the resting phase. The ZT groups used in our study are independent and as such, reflect

either the increase in insulin content between ZT8 and ZT20 or the decrease between ZT20

and ZT8. It has been demonstrated that the half-life of the insulin protein exceeds 20h [25]

however, newly synthetized insulin is preferentially secreted whilst old granules show reduced

microtubule-dependent mobility [26] and are eventually stored and degraded. The drop in

insulin content between ZT20 and ZT8 (12h) reaches 37% in our experimental paradigm and
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although the time frame is short, we hypothesize that the preferential liberation of newly

synthetized ‘insulin rich” granules between ZT20 and ZT8 fully accounts for a return to basal

values. Furthermore, a novel mechanism which specifically degrades nascent insulin granules

during extreme fasting has been unraveled [27]. It has not been investigated whether this path-

way changes over the 24h cycle; we did not see evidence of this via electron microscopy,

however.

Conclusions

Our report shows that upregulation of insulin secretion to face metabolic demands during the

feeding period at ZT20 is solely accounted for by increased insulin granule content. In the con-

text of other studies which have reported modulation of exocytosis, metabolism and granule

trafficking at other time points, our results show that the regulation of the beta cell over the

24h cycle is remarkably complex and that specific pathways all involved in modulating the beta

cell output are finely regulated according to the time of the day. This has implications in islet

research as it may explain discrepancies between studies where experimental procedures are

carried out at different time points.
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