147 research outputs found

    Three-dimensional simulations of inorganic aerosol distributions in east Asia during spring 2001

    Get PDF
    In this paper, aerosol composition and size distributions in east Asia are simulated using a comprehensive chemical transport model. Three-dimensional aerosol simulations for the TRACE-P and ACE-Asia periods are performed and used to help interpret actual observations. The regional chemical transport model, STEM-2K3, which includes the on-line gas-aerosol thermodynamic module SCAPE II, and explicitly considers chemical aging of dust, is used in the analysis. The model is found to represent many of the important observed features. The Asian outflow during March and April of 2001 is heavily polluted with high aerosol loadings. Under conditions of low dust loading, SO_2 condensation and gas phase ammonia distribution determine the nitrate size and gas-aerosol distributions along air mass trajectories, a situation that is analyzed in detail for two TRACE-P flights. Dust is predicted to alter the partitioning of the semivolatile components between the gas and aerosol phases as well as the size distributions of the secondary aerosol constituents. Calcium in the dust affects the gas-aerosol equilibrium by shifting the equilibrium balance to an anion-limited status, which benefits the uptake of sulfate and nitrate, but reduces the amount of aerosol ammonium. Surface reactions on dust provide an additional mechanism to produce aerosol nitrate and sulfate. The size distribution of dust is shown to be a critical factor in determining the size distribution of secondary aerosols. As much of the dust mass is found in the supermicron mode (70–90%), appreciable amounts of sulfate and nitrate are found in the supermicron particles. For sulfate the observations and the analysis indicate that 10–30% of sulfate is in the supermicron fraction during dust events; in the case of nitrate, more than 80% is found in the supermicron fraction

    Tissue hyaluronan expression, as reflected in the sputum of lung cancer patients, is an indicator of malignancy

    Get PDF
    Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology.Research supported by FAPESP (2010/11005-5 and 2010/04462) and CNPq (#471939/2010-2 and 483005/2012-6

    Aggravation of allergic airway inflammation by cigarette smoke in mice is CD44-dependent

    Get PDF
    Background : Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation. Methods : Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures. Results : In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice. Conclusion : We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics

    Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases.</p> <p>Methods</p> <p>sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. <it>In vitro </it>studies were performed to investigate which factors regulate sCD14 release and mCD14 expression.</p> <p>Results</p> <p>sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. <it>In vitro</it>, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition.</p> <p>Conclusions</p> <p>This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.</p

    Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases.</p> <p>Methods</p> <p>sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. <it>In vitro </it>studies were performed to investigate which factors regulate sCD14 release and mCD14 expression.</p> <p>Results</p> <p>sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. <it>In vitro</it>, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition.</p> <p>Conclusions</p> <p>This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.</p

    Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is characterized by abnormal lung inflammation that exceeds the protective response. Various culture models using epithelial cell lines or primary cells have been used to investigate the contribution of bronchial epithelium in the exaggerated inflammation of COPD. However, these models do not mimic <it>in vivo </it>situations for several reasons (e.g, transformed epithelial cells, protease-mediated dissociation of primary cells, etc.). To circumvent these concerns, we developed a new epithelial cell culture model.</p> <p>Methods</p> <p>Using non transformed non dissociated bronchial epithelium obtained by bronchial brushings from COPD and non-COPD smokers, we developed a 3-dimensional culture model, bronchial epithelial spheroids (BES). BES were analyzed by videomicroscopy, light microscopy, immunofluorescence, and transmission electron microscopy. We also compared the inflammatory responses of COPD and non-COPD BES. In our study, we chose to stimulate BES with lipopolycaccharide (LPS) and measured the release of the pro-inflammatory mediators interleukin-8 (IL-8) and leukotriene B4 (LTB4) and the anti-inflammatory mediator prostaglandin E2 (PGE2).</p> <p>Results</p> <p>BES obtained from both COPD and non-COPD patients were characterized by a polarized bronchial epithelium with tight junctions and ciliary beating, composed of basal cells, secretory cells and ciliated cells. The ciliary beat frequency of ciliated cells was not significantly different between the two groups. Of interest, BES retained their characteristic features in culture up to 8 days. BES released the inflammatory mediators IL-8, PGE2 and LTB4 constitutively and following exposure to LPS. Interestingly, LPS induced a higher release of IL-8, but not PGE2 and LTB4 in COPD BES (p < 0.001) which correlated with lung function changes.</p> <p>Conclusion</p> <p>This study provides for the first time a compelling evidence that the BES model provides an unaltered bronchial surface epithelium. More importantly, BES represent an attractive culture model to investigate the mechanisms of injuring agents that mediate epithelial cell inflammation and its contribution to COPD pathogenesis.</p

    Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amount of reactive nitrogen deposited on land has doubled globally and become at least five-times higher in Europe, Eastern United States, and South East Asia since 1860 mostly because of increases in fertilizer production and fossil fuel burning. Because vegetation growth in the Northern Hemisphere is typically nitrogen-limited, increased nitrogen deposition could have an attenuating effect on rising atmospheric CO<sub>2 </sub>by stimulating the vegetation productivity and accumulation of carbon in biomass.</p> <p>Results</p> <p>This study shows that elevated nitrogen deposition would not significantly enhance land carbon uptake unless we consider its effects on re-growing forests. Our results suggest that nitrogen enriched land ecosystems sequestered 0.62–2.33 PgC in the 1980s and 0.75–2.21 PgC in the 1990s depending on the proportion and age of re-growing forests. During these two decades land ecosystems are estimated to have absorbed 13–41% of carbon emitted by fossil fuel burning.</p> <p>Conclusion</p> <p>Although land ecosystems and especially forests with lifted nitrogen limitations have the potential to decelerate the rise of CO<sub>2 </sub>concentrations in the atmosphere, the effect is only significant over a limited period of time. The carbon uptake associated with forest re-growth and amplified by high nitrogen deposition will decrease as soon as the forests reach maturity. Therefore, assessments relying on carbon stored on land from enhanced atmospheric nitrogen deposition to balance fossil fuel emissions may be inaccurate.</p

    Lead exposure and periodontitis in US adults

    Full text link
    Lead is known to have significant effects on bone metabolism and the immune system. This study tested the hypothesis that lead exposure affects periodontitis in adults. Material and Methods:  This study used the data from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–94). It analyzed data from 2500 men and 2399 women, 20–56 yr old, who received complete periodontal examination. Periodontitis was defined as the presence of > 20% of mesial sites with ≥ 4 mm of attachment loss. Lead exposure was grouped into three categories:  7 μg/dL. Covariates were cotinine levels, poverty ratio, race/ethnicity, education, bone mineral density, diabetes, calcium intake, dental visit, and menopause (for women). All analyses were performed separately for men and women and considering the effect design. Univariate, bivariate, and stratified analysis was followed by multivariable analysis by estimating prevalence ratios through poisson regression. Results:  After adjustment for confounders, the prevalence ratios, comparing those with a lead blood level of > 7 μg/dL to those with a lead blood level of < 3 μg/dL was 1.70 (95% confidence interval (CI): 1.02, 2.85) for men and 3.80 (95% CI: 1.66, 8.73) for women. Conclusion:  The lead blood level was positively and statistically associated with periodontitis for both men and women. Considering the public health importance of periodontitis and lead exposure, further studies are necessary to confirm this association.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65253/1/j.1600-0765.2006.00913.x.pd

    Cigarette smoking, cadmium exposure, and zinc intake on obstructive lung disorder

    Get PDF
    <p>Abstract</p> <p>Background and objective</p> <p>This study examined whether zinc intake was associated with lower risk of smoking-induced obstructive lung disorder through interplay with cadmium, one of major toxicants in cigarette smoke.</p> <p>Methods</p> <p>Data were obtained from a sample of 6,726 subjects aged 40+ from the Third National Health and Nutrition Examination Survey. The forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were measured using spirometry. Gender-, ethnicity-, and age-specific equations were used to calculate the lower limit of normal (LLN) to define obstructive lung disorder as: observed FEV1/FVC ratio and FEV1 below respective LLN. Zinc intake was assessed by questionnaire. Logistic regression analysis was applied to investigate the associations of interest.</p> <p>Results</p> <p>The analyses showed that an increased prevalence of obstructive lung disorder was observed among individuals with low zinc intake regardless of smoking status. The adjusted odds of lung disorder are approximately 1.9 times greater for subjects in the lowest zinc-intake tertile than those in the highest tertile (odds ratio = 1.89, 95% confidence interval = 1.22-2.93). The effect of smoking on lung function decreased considerably after adjusting for urinary cadmium. Protective association between the zinc-to-cadmium ratio (log-transformed) and respiratory risk suggests that zinc may play a role in smoking-associated lung disorder by modifying the influence of cadmium.</p> <p>Conclusions</p> <p>While zinc intake is associated with lower risk of obstructive lung disorder, the role of smoking cession and/or prevention are likely to be more important given their far greater effect on respiratory risk. Future research is warranted to explore the mechanisms by which zinc could modify smoking-associated lung disease.</p
    corecore