1,073 research outputs found

    Writing Against Islamic Dramas. Islamisches Familienrecht neu denken

    Full text link
    Starting from a brief discussion of current politics of “othering” at the intersection of culture, gender and sexuality, the present paper takes up critical perspectives from anthropological research and area studies in order, on the one hand, to point to the relevance of looking at transfers and interconnections, on the other hand, to understand how gender and constructions of cultural identity are historically enmeshed. With a view to demonstrating the pertinence of this perspective, examples from contemporary Muslim family law are analysed with a major focus on the Moroccan experience of reform

    Guidelines for the design of haptic widgets

    Get PDF
    Haptic feedback has been shown to improve user performance in Graphical User Interface (GUI) targeting tasks in a number of studies. These studies have typically focused on interactions with individual targets, and it is unclear whether the performance increases reported will generalise to the more realistic situation where multiple targets are presented simultaneously. This paper addresses this issue in two ways. Firstly two empirical studies dealing with groups of haptically augmented widgets are presented. These reveal that haptic augmentations of complex widgets can reduce performance, although carefully designed feedback can result in performance improvements. The results of these studies are then used in conjunction with the previous literature to generate general design guidelines for the creation of haptic widgets

    Zur Einführung

    Full text link

    COA6 facilitates cytochrome c oxidase biogenesis as thiol-reductase for copper metallochaperones in mitochondria.

    No full text
    The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6 are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulphide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis

    A Data-Driven Design Evaluation Tool for Handheld Device Soft Keyboards

    Get PDF
    Thumb interaction is a primary technique used to operate small handheld devices such as smartphones. Despite the different techniques involved in operating a handheld device compared to a personal computer, the keyboard layouts for both devices are similar. A handheld device keyboard that considers the physical capabilities of the thumb may improve user experience. We developed and applied a design evaluation tool for different geometries of the QWERTY keyboard using a performance evaluation model. The model utilizes previously collected data on thumb motor performance and posture for different tap locations and thumb movement directions. We calculated a performance index (PITOT, 0 is worst and 2 is best) for 663 designs consisting in different combinations of three variables: the keyboard's radius of curvature (R) (mm), orientation (O) (°), and vertical location on the screen (L). The current standard keyboard performed poorly (PITOT = 0.28) compared to other designs considered. Keyboard location (L) contributed to the greatest variability in performance out of the three design variables, suggesting that designers should modify this variable first. Performance was greatest for designs in the middle keyboard location. In addition, having a slightly upward curve (R = −20 mm) and orientated perpendicular to the thumb's long axis (O = −20°) improved performance to PITOT = 1.97. Poorest performances were associated with placement of the keyboard's spacebar in the bottom right corner of the screen (e.g., the worst was for R = 20 mm, O = 40°, L = Bottom (PITOT = 0.09)). While this evaluation tool can be used in the design process as an ergonomic reference to promote user motor performance, other design variables such as visual access and usability still remain unexplored

    Going beyond your personal learning network, using recommendations and trust through a multimedia question-answering service for decision-support: A case study in the healthcare.

    Get PDF
    Social learning networks enable the sharing, transfer and enhancement of knowledge in the workplace that builds the ground to exchange informal learning practices. In this work, three healthcare networks are studied in order to understand how to enable the building, maintaining and activation of new contacts at work and the exchange of knowledge between them. By paying close attention to the needs of the practitioners, we aimed to understand how personal and social learning could be supported by technological services exploiting social networks and the respective traces reflected in the semantics. This paper presents a case study reporting on the results of two co-design sessions and elicits requirements showing the importance of scaffolding strategies in personal and shared learning networks. Besides, the significance of these strategies to aggregate trust among peers when sharing resources and decision-support when exchanging questions and answers. The outcome is a set of design criteria to be used for further technical development for a social semantic question and answer tool. We conclude with the lessons learned and future work

    Integrating mitochondrial translation into the cellular context.

    Get PDF
    Mitochondrial-encoded subunits of the oxidative phosphorylation system assemble with nuclear-encoded subunits into enzymatic complexes. Recent findings showed that mitochondrial translation is linked to other mitochondrial functions, as well as to cellular processes. The supply of mitochondrial- encoded proteins is coordinated by the coupling of mitochondrial protein synthesis with assembly of respiratory chain complexes. MicroRNAs imported from the cytoplasm into mitochondria were, surprisingly, found to act as regulators of mitochondrial translation. In turn, translation in mitochondria controls cellular proliferation, and mitochondrial ribosomal subunits contribute to the cytoplasmic stress response. Thus, translation in mitochondria is apparently integrated into cellular processes

    Cytochrome c oxidase biogenesis – from translation to early assembly of the core subunit COX1

    Get PDF
    Mitochondria are the powerhouses of the cell as they produce the majority of ATP with their oxidative phosphorylation (OXPHOS) machinery. The OXPHOS system is composed of the F1Fo ATP synthase and four mitochondrial respiratory chain complexes, the terminal enzyme of which is the cytochrome c oxidase (complex IV) that transfers electrons to oxygen, generating water. Complex IV comprises of 14 structural subunits of dual genetic origin: while the three core subunits are mitochondrial encoded, the remaining constituents are encoded by the nuclear genome. Hence, the assembly of complex IV requires the coordination of two spatially separated gene expression machinery. Recent efforts elucidated an increasing number of proteins involved in mitochondrial gene expression, which are linked to complex IV assembly. Additionally, several COX1 biogenesis factors have been intensively biochemically investigated and an increasing number of structural snapshots shed light on the organization of macromolecular complexes such as the mitoribosome or the cytochrome c oxidase. Here, we focus on COX1 translation regulation and highlight the advanced understanding of early steps during COX1 assembly and its link to mitochondrial translation regulation
    corecore