1,868 research outputs found
Modification of the trapped field in bulk high-temperature superconductors as a result of the drilling of a pattern of artificial columnar holes
The trapped magnetic field is examined in bulk high-temperature
superconductors that are artificially drilled along their c-axis. The influence
of the hole pattern on the magnetization is studied and compared by means of
numerical models and Hall probe mapping techniques. To this aim, we consider
two bulk YBCO samples with a rectangular cross-section that are drilled each by
six holes arranged either on a rectangular lattice (sample I) or on a centered
rectangular lattice (sample II). For the numerical analysis, three different
models are considered for calculating the trapped flux: (i), a two-dimensional
(2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D
finite-element model neglecting demagnetizing effects but incorporating
magnetic relaxation in the form of an E-J power law, and, (iii), a 3D finite
element analysis that takes into account both the finite height of the sample
and flux creep effects. For the experimental analysis, the trapped magnetic
flux density is measured above the sample surface by Hall probe mapping
performed before and after the drilling process. The maximum trapped flux
density in the drilled samples is found to be smaller than that in the plain
samples. The smallest magnetization drop is found for sample II, with the
centered rectangular lattice. This result is confirmed by the numerical models.
In each sample, the relative drops that are calculated independently with the
three different models are in good agreement. As observed experimentally, the
magnetization drop calculated in the sample II is the smallest one and its
relative value is comparable to the measured one. By contrast, the measured
magnetization drop in sample (1) is much larger than that predicted by the
simulations, most likely because of a change of the microstructure during the
drilling process.Comment: Proceedings of EUCAS 09 conferenc
Detection and period measurements of GX1+4 at hard x ray energies with the SIGMA telescope
The galactic Low Mass X ray Binary GX1+4 was detected by the coded aperture hard X ray gamma ray SIGMA telescope during the Feb. to April 1991 observations of the galactic center regions. The source, whose emission varied during the survey of a factor greater than 40 pct., reached a maximum luminosity in the 40 to 140 energy range of 1.03 x 10(exp 37) erg/s (D = 8.5 kpc), thus approaching the emission level of the 1970 to 1980 high state. Two minute flux pulsations were detected on Mar. 22 and on Mar. 31 and Apr. 1. Comparison with the last period measurements shows that the current spin-down phase of GX1+4 is ending. Concerning the proposed association of this source with the galactic center 511 keV annihilation emission, upper limits were derived
Bulk high-Tc superconductors with drilled holes: how to arrange the holes to maximize the trapped magnetic flux ?
Drilling holes in a bulk high-Tc superconductor enhances the oxygen annealing
and the heat exchange with the cooling liquid. However, drilling holes also
reduces the amount of magnetic flux that can be trapped in the sample. In this
paper, we use the Bean model to study the magnetization and the current line
distribution in drilled samples, as a function of the hole positions. A single
hole perturbs the critical current flow over an extended region that is bounded
by a discontinuity line, where the direction of the current density changes
abruptly. We demonstrate that the trapped magnetic flux is maximized if the
center of each hole is positioned on one of the discontinuity lines produced by
the neighbouring holes. For a cylindrical sample, we construct a polar
triangular hole pattern that exploits this principle; in such a lattice, the
trapped field is ~20% higher than in a squared lattice, for which the holes do
not lie on discontinuity lines. This result indicates that one can
simultaneously enhance the oxygen annealing, the heat transfer, and maximize
the trapped field
Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields
Crossed magnetic field effects on bulk high-temperature superconductors have
been studied both experimentally and numerically. The sample geometry
investigated involves finite-size effects along both (crossed) magnetic field
directions. The experiments were carried out on bulk melt-processed Y-Ba-Cu-O
(YBCO) single domains that had been pre-magnetized with the applied field
parallel to their shortest direction (i.e. the c-axis) and then subjected to
several cycles of the application of a transverse magnetic field parallel to
the sample ab plane. The magnetic properties were measured using orthogonal
pick-up coils, a Hall probe placed against the sample surface and
Magneto-Optical Imaging (MOI). We show that all principal features of the
experimental data can be reproduced qualitatively using a two-dimensional
finite-element numerical model based on an E-J power law and in which the
current density flows perpendicularly to the plane within which the two
components of magnetic field are varied. The results of this study suggest that
the suppression of the magnetic moment under the action of a transverse field
can be predicted successfully by ignoring the existence of flux-free
configurations or flux-cutting effects. These investigations show that the
observed decay in magnetization results from the intricate modification of
current distribution within the sample cross-section. It is also shown that the
model does not predict any saturation of the magnetic induction, even after a
large number (~ 100) of transverse field cycles. These features are shown to be
consistent with the experimental data.Comment: 41 pages, 9 figures, accepted in Phys. Rev. B Changes : 8 references
added, a few precisions added, some typos correcte
GRB030406 an extremely hard burst outside of the INTEGRAL field of view
Using the IBIS Compton mode, the INTEGRAL satellite is able to detect and
localize bright and hard GRBs, which happen outside of the nominal INTEGRAL
telescopes field of view. We have developed a method of analyzing such INTEGRAL
data to obtain the burst location and spectra. We present the results for the
case of GRB030406. The burst is localized with the Compton events, and the
location is consistent with the previous Interplanetary Network position. A
spectral analysis is possible with the detailed modeling of the detector
response for such a far off-axis source with the offset of 36.9 . The
average spectrum of the burst is extremely hard: the photon index above 400
\kev is -1.7, with no evidence of a break up to 1.1 \mev at 90% confidence
level.Comment: Astronomy and Astrophysics in pres
Asymptotic behaviour of the spectrum of a waveguide with distant perturbations
We consider the waveguide modelled by a -dimensional infinite tube. The
operator we study is the Dirichlet Laplacian perturbed by two distant
perturbations. The perturbations are described by arbitrary abstract operators
''localized'' in a certain sense, and the distance between their ''supports''
tends to infinity. We study the asymptotic behaviour of the discrete spectrum
of such system. The main results are a convergence theorem and the asymptotics
expansions for the eigenvalues. The asymptotic behaviour of the associated
eigenfunctions is described as well. We also provide some particular examples
of the distant perturbations. The examples are the potential, second order
differential operator, magnetic Schroedinger operator, curved and deformed
waveguide, delta interaction, and integral operator
Pulsed-field magnetization of drilled bulk high-temperature superconductors: flux front propagation in the volume and on the surface
We present a method for characterizing the propagation of the magnetic flux
in an artificially drilled bulk high-temperature superconductor (HTS) during a
pulsed-field magnetization. As the magnetic pulse penetrates the cylindrical
sample, the magnetic flux density is measured simultaneously in 16 holes by
means of microcoils that are placed across the median plane, i.e. at an equal
distance from the top and bottom surfaces, and close to the surface of the
sample. We discuss the time evolution of the magnetic flux density in the holes
during a pulse and measure the time taken by the external magnetic flux to
reach each hole. Our data show that the flux front moves faster in the median
plane than on the surface when penetrating the sample edge; it then proceeds
faster along the surface than in the bulk as it penetrates the sample further.
Once the pulse is over, the trapped flux density inside the central hole is
found to be about twice as large in the median plane than on the surface. This
ratio is confirmed by modelling
Multiscale fluctuations in nuclear response
The nuclear collective response is investigated in the framework of a doorway
picture in which the spreading width of the collective motion is described as a
coupling to more and more complex configurations. It is shown that this
coupling induces fluctuations of the observed strength. In the case of a
hierarchy of overlapping decay channels, we observe Ericson fluctuations at
different scales. Methods for extracting these scales and the related lifetimes
are discussed. Finally, we show that the coupling of different states at one
level of complexity to some common decay channels at the next level, may
produce interference-like patterns in the nuclear response. This quantum effect
leads to a new type of fluctuations with a typical width related to the level
spacing.Comment: 34 Latex pages including 6 figures (submitted to Phys. Rev. C
Internal frequency conversion extreme ultraviolet interferometer using mutual coherence properties of two high-order-harmonic sources
International audienceWe report on an innovative two-dimensional imaging extreme ultraviolet (XUV) interferometer operating at 32 nm based on the mutual coherence of two laser high order harmonics (HOH) sources, separately generated in gas. We give the first evidence that the two mutually coherent HOH sources can be produced in two independent spatially separated gas jets, allowing for probing centimeter-sized objects. A magnification factor of 10 leads to a micron resolution associated with a subpicosecond temporal resolution. Single shot interferograms with a fringe visibility better than 30% are routinely produced. As a test of the XUV interferometer, we measure a maximum electronic density of 3×10^20 cm^−3 1.1 ns after the creation of a plasma on aluminum target
The role of the pathologist in tissue banking: European Consensus Expert Group Report
Human tissue biobanking encompasses a wide range of activities and study designs and is critical for application of a wide range of new technologies (-“omics”) to the discovery of molecular patterns of disease and for implementation of novel biomarkers into clinical trials. Pathology is the cornerstone of hospital-based tissue biobanking. Pathologists not only provide essential information identifying the specimen but also make decisions on what should be biobanked, making sure that the timing of all operations is consistent with both the requirements of clinical diagnosis and the optimal preservation of biological products. This document summarizes the conclusions of a Pathology Expert Group Meeting within the European Biological and Biomolecular Research Infrastructure (BBMRI) Program. These recommendations are aimed at providing guidance for pathologists as well as for institutions hosting biobanks on how to better integrate and support pathological activities within the framework of biobanks that fulfill international standards
- …