154 research outputs found

    Diffusive representations for fractional Laplacian: systems theory framework and numerical issues

    Get PDF
    Bridging the gap between an abstract definition of pseudo-differential operators, such as (-\Delta)^{\gamma} for - 1/2 < \gamma < 1/2, and a concrete way to represent them has proved difficult; deriving stable numerical schemes for such operators is not an easy task either. Thus, the framework of diffusive representations, as already developed for causal fractional integrals and derivatives, is being applied to fractional Laplacian: it can be seen as an extension of the Wiener-­Hopf factorization and splitting techniques to irrational transfer functions

    Optimal control of fractional systems: a diffusive formulation

    Get PDF
    Optimal control of fractional linear systems on a finite horizon can be classically formulated using the adjoint system. But the adjoint of a causal fractional integral or derivative operator happens to be an anti-causal operator: hence, the adjoint equations are not easy to solve in the first place. Using an equivalent diffusive realization helps transform the original problem into a coupled system of PDEs, for which the adjoint system can be more easily derived and properly studied

    Standard diffusive systems are well-posed linear systems

    Get PDF
    The class of well-posed linear systems as introduced by Salamon has become a well-understood class of systems, see e.g. the work of Weiss and the book of Staffans. Many partial partial differential equations with boundary control and point observation can be formulated as a well-posed linear system. In parallel to the development of well-posed linear systems, the class of diffusive systems has been developed. This class is used to model systems for which the impulse response has a long tail, i.e., decays slowly, or systems with a diffusive nature, like the Lokshin model in acoustics. Another class of models arethe fractional differential equations, i.e., a system which has fractional powers of s in its transfer functio

    Diffusive approximation of a time-fractional Burger's equation in nonlinear acoustics

    Get PDF
    A fractional time derivative is introduced into the Burger's equation to model losses of nonlinear waves. This term amounts to a time convolution product, which greatly penalizes the numerical modeling. A diffusive representation of the fractional derivative is adopted here, replacing this nonlocal operator by a continuum of memory variables that satisfy local-in-time ordinary differential equations. Then a quadrature formula yields a system of local partial differential equations, well-suited to numerical integration. The determination of the quadrature coefficients is crucial to ensure both the well-posedness of the system and the computational efficiency of the diffusive approximation. For this purpose, optimization with constraint is shown to be a very efficient strategy. Strang splitting is used to solve successively the hyperbolic part by a shock-capturing scheme, and the diffusive part exactly. Numerical experiments are proposed to assess the efficiency of the numerical modeling, and to illustrate the effect of the fractional attenuation on the wave propagation.Comment: submitted to Siam SIA

    Systems control theory applied to natural and synthetic musical sounds

    Get PDF
    Systems control theory is a far developped field which helps to study stability, estimation and control of dynamical systems. The physical behaviour of musical instruments, once described by dynamical systems, can then be controlled and numerically simulated for many purposes. The aim of this paper is twofold: first, to provide the theoretical background on linear system theory, both in continuous and discrete time, mainly in the case of a finite number of degrees of freedom ; second, to give illustrative examples on wind instruments, such as the vocal tract represented as a waveguide, and a sliding flute

    Damping models for PDEs: a port-Hamiltonian formulation

    Get PDF
    Some methodologies developped by practitioners to model damping phenomena for distributed parameter systems will be listed and revisited. We will try to put them in the framework of port-Hamiltonian systems, either linear or non-linear, either finite or infinite-dimensional. The most significant distinction occurs between static and dynamic damping models: for the latter, a particular attention will be paid to the notion of memory variables, such as those defined in mechanical engineering

    Fractional equations and diffusive systems: an overview

    Get PDF
    The aim of this discussion is to give a broad view of the links between fractional differential equations (FDEs) or fractional partial differential equations (FPDEs) and so-called diffusive representations (DR). Many aspects will be investigated: theory and numerics, continuous time and discrete time, linear and nonlinear equations, causal and anti-causal operators, optimal diffusive representations, fractional Laplacian. Many applications will be given, in acoustics, continuum mechanics, electromagnetism, identification, ..

    Digital waveguide simulation of convex acoustic pipes

    Get PDF
    This work deals with the physical modelling of acoustic pipes for real-time simulation, using the “Digital Waveguide Network” approach and the horn equation. With this approach, a piece of pipe is represented by a two-port system with a loop which involves two delays for wave propagation, and some subsystems without internal delay. A well-known form of this system is the “Kelly-Lochbaum” framework. It allows the reduction of the computation complexity and it gives a physically meaningful interpretation of the involving subsystems. In this paper, we focus this work on the simulation of pipes with a convex profile, for which a curvature coefficient is constant and negative. In the literature, it has been shown that such pipes have trapped modes. With the formalism of automatic control, adapted for “Waveguides”, we meet some substates of the system which do not take effect on the outputs. But, using the “Kelly-Lochbaum” framework with the horn equation, two problems occur: first, even if the outputs are bounded, some substates have their values which diverge; second, there is an infinite number of such substates. The system is then unstable and cannot be simulated as such. The solution of this problem is obtained with two steps. First, we show that there is a simple standard form compatible with the “Waveguide” approach, for which there is an infinite number of solutions which preserve the input/output relations. Second, we look for one solution which guarantees the stability of the system and which makes easier the approximation in order to get a low-cost simulation

    Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions

    Get PDF
    This paper proves the asymptotic stability of the multidimensional wave equation posed on a bounded open Lipschitz set, coupled with various classes of positive-real impedance boundary conditions, chosen for their physical relevance: time-delayed, standard diffusive (which includes the Riemann-Liouville fractional integral) and extended diffusive (which includes the Caputo fractional derivative). The method of proof consists in formulating an abstract Cauchy problem on an extended state space using a dissipative realization of the impedance operator, be it finite or infinite-dimensional. The asymptotic stability of the corresponding strongly continuous semigroup is then obtained by verifying the sufficient spectral conditions derived by Arendt and Batty (Trans. Amer. Math. Soc., 306 (1988)) as well as Lyubich and V\~u (Studia Math., 88 (1988))
    • 

    corecore