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Fractional equations and diffusive systems:

an overview
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Abstract: The aim of this discussion is to give a broad view of the links between fractional
differential equations (FDEs) or fractional partial differential equations (FPDEs) and so-
called diffusive representations (DR). Many aspects will be investigated: theory and numerics,
continuous time and discrete time, linear and nonlinear equations, causal and anti-causal
operators, optimal diffusive representations, fractional Laplacian. Many applications will be
given, in acoustics, continuum mechanics, electromagnetism, identification, ...
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1. INTRODUCTION

Fractional differential systems have become quite popular
in the recent decades, giving rise to a wide literature, both
on the theoretical and on the applied sides; monographs,
and special issues of international journals are now devoted
to this active research field.

The aim of this discussion paper is two fold: first explain
to what extent diffusive representations can be helful for
fractional equations, second give many fields of application
where this technique has proved useful.

1.1 Fractional integral and derivatives

These causal linear operators can be defined in many ways,
see e.g. Matignon [2009a].

Fractional integral Let β ∈ (0, 1), and set hβ(t) :=
1

Γ(β) tβ−1 for t > 0 only; then, hβ ∈ L1
loc(R

+). For any

T > 0, let u ∈ L2(0, T ), and define Iβu := hβ ⋆ u or, more
explicitely:

Iβu(t) =

∫ t

0

1

Γ(β)
τβ−1 u(t − τ) dτ .

This is the Riemann-Liouville fractional integral of order
β ∈ (0, 1) of u: it is causal, and belongs to L2(0, T ) also.
In terms of causal Laplace transform, Hβ(s) = s−β in
ℜe(s) > 0; hence, the interpretation of the fractional
integral is a causal low-pass filter, with a gain of −6 β
dB per octave.

Fractional derivative The fractional derivative is the
inverse of the fractional integral, but some technicalities
are to be found in this case. Let α ∈ (0, 1), and for any
T > 0, let u ∈ H1(0, T ), (that is u ∈ L2(0, T ), u has a
weak derivative say u̇ which does belong to L2(0, T )), and
define Dαu = I1−αDu := h1−α ⋆ u̇ or, more explicitely:

Dαu(t) =

∫ t

0

1

Γ(1 − α)
τ−α u̇(t − τ) dτ .

This is the fractional derivative of order α ∈ (0, 1) of u:
it is causal, and belongs to L2(0, T ). In terms of causal

Laplace transform, H̃α(s) = s+α in ℜe(s) > 0; hence, the
interpretation of the fractional derivative is a causal high-
pass filter, with a gain of +6α dB per octave.

Open question Both these operators present the draw-
back of not being differential operators, not easily giving
rise to a semigroup; moreover, a hereditary behaviour can
be foreseen, with a long-memory decay. Therefore, we try
to make a link between these fractional operators, and
ordinary differential equations (ODEs), or just convolution
by families of decaying exponentials: we derive functional
identities for the kernel hβ and its Laplace transform Hβ ,
in the time-domain and the frequency-domain; these are
being used to define input-output representations, and
even state-space realizations.

1.2 Diffusive representations

We refer to Staffans [1994] and Montseny [1998] for an
introduction.

First diffusive representations With specific weight

µβ(ξ) := sin(β π)
π ξ−β , one has hβ(t) =

∫
∞

0
µβ(ξ) e−ξ t dξ,

which helps reformulate the fractional integral as the fol-
lowing input-output representation :

y(t) =

∫
∞

0

µβ(ξ) [eξ ⋆ u](t) dξ ,

with eξ(t) := e−ξ t, and [eξ ⋆ u](t) =
∫ t

0
e−ξ (t−τ) u(τ) dτ .

Then, the following infinite-dimensional dynamical system
can be seen as a state-space realization of the fractional
intergral of order β:

∂tϕ(ξ, t) =−ξ ϕ(ξ, t) + u(t), ϕ(ξ, 0) = 0 , (1)

y(t) =

∫
∞

0

µβ(ξ) ϕ(ξ, t) dξ . (2)

The well-posedness condition
∫
∞

0
µβ(ξ)
1+ξ dξ < +∞ holds.



Moreover, the energy balance can be checked, ∀T > 0 :
∫ T

0

u(t) y(t) dt = Eφ(T ) +

∫ T

0

∫ +∞

0

ξ µβ(ξ) φ(ξ, t)2 dξ dt ,

with storage function Eφ(T ) := 1
2

∫
∞

0
φ(ξ, T )2 µβ(ξ) dξ.

Extended diffusive representations A careful computa-
tion shows that the following input-output representation
holds:

ỹ(t) =

∫
∞

0

µ1−α(ξ) [u − ξ eξ ⋆ u](t) dξ .

The following infinite-dimensional dynamical system can
be seen as a state-space realization of the fractional deriva-
tive of order α:

∂tϕ̃(ξ, t) =−ξ ϕ̃(ξ, t) + u(t), ϕ̃(ξ, 0) = 0 , (3)

ỹ(t) =

∫
∞

0

µ1−α(ξ) [u(t) − ξ ϕ̃(ξ, t)] dξ . (4)

The well-posedness condition
∫
∞

0
µ1−α(ξ)

1+ξ dξ < +∞ holds.

Moreover, the energy balance can be checked, ∀T > 0 :
∫ T

0

u(t) ỹ(t) dt = Ẽ
φ̃
(T )+

∫ T

0

∫ +∞

0

µ1−α(ξ) (u−ξ φ̃)2 dξ dt ,

with storage function Ẽ
φ̃
(T ) := 1

2

∫
∞

0
φ̃(ξ, T )2 ξ µ1−α(ξ) dξ.

Conclusion on DR The main interests or advantages of
the diffusive realizations are:

• the existence of an associated semigroup,
• the dissipativity of the realization, whenever the

operator is positive,
• the possibility of deriving numerical schemes without

heredity, hence memory-saving algorithms.

2. GENERAL ASPECTS

2.1 Equivalent formulation of fractionally damped equations

First an infinite-dimensional state-space realization of the
fractional derivative or integral input-ouput relation is
being used. Thus, another way of considering the problem
consists in interpreting the fractionally damped equation
as a coupled problem between a conservative classical sys-
tem (either linear or non-linear, either ODE or PDE) and
a diffusion equation: this naturally introduces a global en-
ergy (either quadratic or non-quadratic) in the augmented
state-space, and leads, at least formally, to the decay of
the global energy, see e.g. Staffans [1994] first, Montseny
et al. [2000], Haddar et al. [2004] for a nonlinear FDE,
Haddar et al. [2008] for a linear FPDE.

2.2 Stability issues

On FDEs, there is an if and only if condition Matignon
[1998], and some related results in Bonnet et al. [2000].
With DR at hand, we only have an if condition, which
does not impose constant coefficients, so the range of
application is larger; but still if the formal computation of
the global energy balance is quite easy, the mathematical
proof remains quite involved.

The main difficulty or drawback of the diffusive realiza-
tions is the lack of compactness proprety,

• which makes the canonical embeddings of dense sub-
spaces not compact, and forbids the use of many
existence theorems where it is required,

• which does not allow the use of LaSalle’s invari-
ance principle for asymptotic stability analysis, which
would require a precompactness prorerty of the tra-
jectories.

Hence, we have to resort to Arendt-Batty stability theorem
to conclude on asymptotic stability of the coupled system,
after a careful study of the spectrum of the generator of
the associated semigroup, see Matignon et al. [2005] for an
FDE and Matignon [2006] for an FPDE.

2.3 Numerical methods

For sure, discretizing the continuous diffusive representa-
tions in the ξ-domain is possible, but it must be done in a
careful way, so as to ensure an equivalent energy balance
at the discrete level, see e.g. Haddar et al. [2008]; also
the weights can be optimized w.r.t a criterion, see e.g.
Deü et al. [2010]. More involved numerical methods can
be found in Diethelm [2008], Haddar et al. [2010].

2.4 Optimal control

Still very few papers are concerned with the question of
optimal control of fractional differential systems, ad hoc
finite-dimensional approximations of fractional derivatives
are used in the first place, and classical optimal control
methods are being applied in the second place; no proof of
convergence of the process is provided.

A first reason for that could be that optimal control
of infinite-dimensional systems is a quite involved and
technical field, but a second one lies in the very nature
of fractional operators. They are causal, but highly non-
local in time (with a weakly integrable singularity at the
origin); hence their adjoint becomes necessarily anti-causal
and still non-local in time. Thus, one can easily imagine
that the complexity of the theory for forward fractional
dynamical systems becomes even more intricate when
the coupled equations of the adjoint systems are derived;
because we will be left with coupled forward and backward
fractional dynamics in order to solve the optimal control
problem: at first glance, it seems very unlikely that Riccati
equations (if any) could be either analysed or even solved
(not to speak of adequate numerical schemes for these) in
such a complicated setting.

In order to overcome this intrinsic difficulty, in Matignon
[2010] we propose to use the equivalent diffusive repre-
sentations of fractional systems, and to work on it, as for
infinite dimensional systems of integer order.

3. APPLICATIONS

3.1 Viscoelasticity in continuum mechanics

A large class of such systems, often found in mechanics, is
based on causal pseudo-differential time-operators, some-
times with a long-memory behaviour: classical examples
are fractional integrals and derivatives. Pseudo-differential
operators are hereditary: the whole past of the physical



state is involved in the dynamic expression of the sys-
tem evolution. This generally introduces major technical
difficulties. Moreover, from the thermodynamical point
of view, consistency of the model is a difficult question
in most cases. In e.g. Deü et al. [2010], the fractional
Zener model is first translated into its equivqlent diffusive
realization, then discretized using a coupled Newmark-
diffusive scheme, with optimal choice of the weights. An
FPDE in dimension 2 will be treated using the same
approach, and the classical finite element method (FEM)
in space.

3.2 Visco-thermal losses in musical acoustics

The famous Webster-Lokshin model which describes acous-
tic waves traveling in a duct with viscothermal losses at
the lateral walls is a wave equation with spatially-varying
coefficients, which involves fractional-order integrals and
derivatives with respect to time: it has been presented in
Lokshin and Rok [1978] and Polak [1991], and studied in
e.g. Hélie et al. [2006a] and Haddar et al. [2008] thanks to
DR.

3.3 Identification in signal processing

Once an equivalent diffusive model has been found, it is
of interest to find a low order finite dimensional approx-
imation: to this end, optimal formulation is preferred in
practise: a first worked-out example can be found in Garcia
et al. [1998], and a whole family of fractional and diffusive
systems of increasing complexity has been explored in
Hélie et al. [2006b].

3.4 Matched impedance of a beam in control of PDEs

For the formulation of second order systems in time, it can
be necessary to deal with vector-valued X, hence positive
matrix-valued PDOs of diffusive type; not only diagonal
matrices of scalar positive PDOs are useful in practice,
as an example, in order to solve the impedance matching
problem for the Euler–Bernoulli beam, an impedance ma-

trix of the form

[
a ∂+α

t 1
1 b ∂−α

t

]
, was used with α = 1

2 , see

Montseny et al. [1997]: a necessary and sufficient condition
for the positivity of this operator is ab > 1

(cos απ/2)2 . Its

equivalent DR should be useful to build an absorbing
feedback, which realizes an impedance matching, but so
far, the theoretical question is still open, even though
numerical simulations prove efficient.

3.5 Polarized media in electomagnetism

In polarized media, a hierarchy of models can be found,
see e.g. Petropoulos [2005]. First Debye ou Maxwell : 1

1+τs ,

then Cole–Cole : 1
1+(τs)α , then Davidson–Cole : 1

(1+τs)γ ,

and last Havriliak–Negami : 1
(1+(τs)α)γ . All of these are of

diffusive type, meaning that there exists a specific positive
measure µ, satisfying the well-posedness condition, which
can be used to represent the system as diffusive.

4. CONCLUSION

Still many things are to be done in this very active field of
research: study existence for nonlinear systems, both FDEs
and FPDEs; study asymptotic stability in the nonlinear
case; go to the MIMO case for Euler-Bernoulli matched
impedance matrix; do some more progress on optimal
numerical methods; develop the ideas, both theoretical
and numerical, for the optimal control of such systems;
address new family of examples, such as those in elec-
tromagnetism;together with computer science developpe-
ment, define some distributed systems strategy to simulate
these types of distributed parameter systems.
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