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ABSTRACT

This work deals with the physical modelling of acoustic pipes

for real-time simulation, using the “Digital Waveguide Network”

approach and the horn equation. With this approach, a piece of

pipe is represented by a two-port system with a loop which in-

volves two delays for wave propagation, and some subsystems

without internal delay. A well-known form of this system is the

“Kelly-Lochbaum” framework. It allows the reduction of the com-

putation complexity and it gives a physically meaningful interpre-

tation of the involving subsystems.

In this paper, we focus this work on the simulation of pipes

with a convex profile, for which a curvature coefficient is constant

and negative. In the literature, it has been shown that such pipes

have trapped modes. With the formalism of automatic control,

adapted for “Waveguides”, we meet some substates of the system

which do not take effect on the outputs.

But, using the “Kelly-Lochbaum” framework with the horn

equation, two problems occur: first, even if the outputs are bound,

some substates have their values which diverge; second, there is

an infinite number of such substates. The system is then unstable

and cannot be simulated as such.

The solution of this problem is obtained with two steps. First,

we show that there is a simple standard form compatible with the

“Waveguide” approach, for which there is an infinite number of

solutions which preserve the input/output relations. Second, we

look for one solution which guarantees the stability of the system

and which makes easier the approximation in order to get a low-

cost simulation.

1. INTRODUCTION

In [1] and [2], the physical modelling of acoustic wave propagation

in convex pipes has been studied, and these studies have shown the

presence of trapped modes. Similarly to the model of cone connec-

tions with a negative change of slope (cf. eg. [3]), some problems

of stability occur. Since these instabilities have no influence in a

global point of view, for the simulation some solutions have con-

sisted in considering the system in a global point of view, using

for example a modal approach or a digital convolution with finite

impulse response filters.

But, for digital simulations with low-cost computations, the

modal approaches need the truncation of modes, which involve

some problems of realism. And because of some long memory ef-

fects (of the diffusive type for visco-thermal losses for example)
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the convolution methods are not adapted because the impulse re-

sponses decrease very slowly.

In [4], flared pipes have been modelled with the Digital Wave-

guide Network approach (cf. eg. [5]) using the horn equation of

Webster (cf. [6]) and taking into account the visco-thermal losses

(cf. [7, 8]). The simulation framework of Kelly-Lochbaum has

been obtained (cf. eg. [9]). This system involves some delays

for wave propagation through pieces of pipe, and some recursive

filters for reflections and transmissions at junctions of pieces of

pipe. This model leads to real-time simulations.

Nevertheless, the application of the latter model to convex

pipes produces some stability problems. The aim of this work is to

get a stable digital realization for convex pipes, similar to this one

of [4].

This paper is organized as follow. Section 2 presents the acous-

tic model we use, the Webster-Lokshin model, and 2 equivalent

systems for the simulation. In sec. 3, we study in the Laplace

domain the singularities of the transfer functions involved in this

model, and we explain the reason of their presence in the case of

convex pipes. In sec. 4, we propose a “generalized” framework

for simulation, which allows the description of the acoustic model

with 2 degrees of freedom, which are 2 transfer functions of the

system. In sec. 5, we choose 2 transfer functions which allow a

stable digital simulation for convex pipes. This solution is com-

patible with the Waveguide approach and it is similar to [4]. The

last section concludes this paper and deals with perspectives.

2. ACOUSTIC MODEL AND SYSTEMS

2.1. The Webster-Lokshin model

The Webster-Lokshin model is a mono-dimensional model which

characterizes the linear propagation of acoustic waves inside ax-

isymmetric pipes, with the weak hypothesis of quasi-sphericity of

isobares near the wall (cf. [8]), and taking into account the visco-

thermal losses at the wall with the hypothesis of large tubes (cf.

[7, 10]). The acoustic pressure P and the volume flow U are gov-

erned by the following equations, given in the Laplace domain:
 

s2

c2
+2ε(ℓ)

s
3

2

c
3

2

+Υ(ℓ) − ∂2

∂ℓ2

!n
r(ℓ)P (ℓ, s)

o
= 0, (1)

ρ s
U(ℓ, s)

S(ℓ)
+

∂

∂ℓ
P (ℓ, s)= 0, (2)

where s∈C is the Laplace variable (ℑm(s) = ω is the pulsation),

ℓ is the curvilinear abscissa at the wall, r(ℓ) is the radius of the

pipe, S(ℓ) = πr(ℓ)2 is the section area, ε(ℓ)=κ0

p
1−r′(ℓ)2/r(ℓ)

quantifies the visco-thermal losses (m− 1

2 ) and Υ(ℓ)=r′′(ℓ)/r(ℓ)
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represents the curvature of the pipe. Equation (1) is the Webster-

Lokshin equation, and (2) is the Euler equation satisfied outside

the boundary layer.

2.2. Two equivalent systems

We define a piece of pipe by a tube with a finite length L and with

constant coefficients of losses and curvature (ε and Υ). We will

build two systems which represent the acoustic effects of a piece

of pipe on the travelling waves given by:

φ± =
r

2

“
P ± ZU

”
, where Z(ℓ) =

ρc

S(ℓ)
. (3)

In [4], the effects of a piece of pipe on the variables φ± are rep-

resented by input/ouput systems for the Webster-Lokshin model.

Two equivalent forms (in an input/output point of view) are given.

A first form, so-called “global”, is given in Fig. 1-(a). Its 4

transfer functions represent global effects of the piece of pipe on

the waves φ±: Rl
g and Rr

g are the left and right reflections respec-

tively, and Tg is the global transmission through the piece of pipe.

“global” means that all internal acoustic effects are mixed, for ex-

ample the forwards and backwards of wave propagation are taken

into account.

A second form, so-called “decomposed”, is given by Fig. 1-(b).

This form is interesting because it isolates the internal acoustic ef-

fects inside some transfer functions. For example, Rle represents

the reflection of φ+
0 at the left interface, and T represents the prop-

agation through the piece of pipe. Here the successive forwards

and backwards are represented by the internal loop. This form al-

lows the recovery of the Kelly-Lochbaum framework which is well

adapted for digital real-time simulation (cf. eg. [9]).

(a) (b)

Rl
g

Tg

Tg

Rr
g

φ+
0 φ+

0

φ−
0 φ−

0φ−
L φ−

L

φ+
L φ+

L

QpQ QrQlRle Rli

1+Rle

1+Rli

Rre
Rri

1+Rre

1+RriT

T

Figure 1: Two-port Q (global form) and its decomposed form.

Let’s define Γ(iω) = ik(ω), where k(ω) is the standard com-
plex wavenumber. In the Laplace domain, the function Γ is given

by

Γ(s) =

r“s

c

”2

+ 2ε
“s

c

” 3

2

+ Υ. (4)

The analytical solving of (1) and (2) gives the functions of Q

Tg = {AT cosh(ΓL) + BT sinh(ΓL) / Γ}−1 , (5)

Rl
g = {AR cosh(ΓL) + BRl sinh(ΓL) / Γ}Tg, (6)

Rr
g = {AR cosh(ΓL) + BRr sinh(ΓL) / Γ}Tg, (7)

where AT , AR, BT , BRl and BRr are some known functions of s
and Γ(s)2. With ζ = r′/r, the functions of the decomposed form
are given in [4]:

T (s)=e−Γ(s)L, (8)

Rle(s)=
s

c
−Γ(s)−ζl

s

c
+Γ(s)+ζl

, Rli(s)=−
s

c
−Γ(s)+ζl

s

c
+Γ(s)+ζl

, (9)

Rre(s)=
s

c
−Γ(s)+ζr

s

c
+Γ(s)−ζr

, Rri(s)=−
s

c
−Γ(s)−ζr

s

c
+Γ(s)−ζr

. (10)

With τ := L/c, note that we can write Tg(iω)=Dg(iω) e−iωτ

and T (iω) = D(iω) e−iωτ , where Dg and D are two transfer

functions associated to causal systems (for Υ ≥ 0). Consequently,
the impulse responses of Tg and T are these ones of Dg and D
delayed by τ which corresponds to the time of propagation inside

the piece of pipe.

In the case of pipes with negative curvatures (Υ < 0) these
two forms present a paradox: whereas some numerical calculus

reveal that the global form of Fig. 1-(a) is stable, the transfer func-

tions of the decomposed form of Fig. 1-(b) have some singularities

in the Laplace domain which produces some instabilities. The aim

of the following section is the understanding of the reason of this

problem.

3. ANALYSIS OF SINGULARITIES

3.1. Complex analysis of Γ

The function Γ(s) (associated to the wavenumber k(ω), cf. (4))
is defined as a square root of a complex number which depends

itself on a square root of s. But there is an infinite number of

continuations of the positive square root defined on R
+ for the

complex plan, and we must choose one of them in order to define

in C the transfer functions of the system.

In [11, 12], the function Γ is defined by the choice of curves

(called cut) which link some branching points to the infinity. These

cuts are continuous sets of singularities, which produce some dis-

continuities of Γ. And the branching points sn are the solutions of

Γ(s)2 = 0, and s0 = 0 (for
√

s).

Υ=0: For cylindrical and conical pipes, the unique branching point
is s0 = 0.

Υ>0: For flared pipes, Γ has 3 branching points: s0 = 0, s1 and

s2 =s1, with ℜe(s1)≤0.

Υ<0: For convex pipes, Γ has 2 branching points: s0 = 0, and
s1 ∈ R

+.

Whereas these branching points are fixed (they depend on c, ε and
Υ), the cuts have to be chosen.

ForΥ ≥ 0, since no branching point is in the right-half Laplace
plane (denoted C

+
0 :={s∈C/ℜe(s)>0}), it is possible to define

an analytical continuation over C
+
0 in order to respect the stability

of the transfer functions. For example, the case of horizontal cuts

is presented in Fig. 2.

However, for Υ < 0, one branching points, s1, is in C
+
0 , and

so it is not possible to define a analytical continuation over C
+
0

since at least one part of the cut is in C
+
0 . Figure 2 presents the

case of 2 overlapped cuts on R
−: ]−∞, 0] and ]−∞, s1].
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Figure 2: Phase of Γ(s) in the complex plan, branching points and
horizontal cuts.
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3.2. Poles and physical interpretation

Whereas the transfer functions of the decomposed form (cf. (8-

10)) have the same type of singularities than Γ (of the cut type),

the 3 global transfer functions (cf. (5-7)) only depends on Γ(s)2

and not Γ(s) (they are invariant with the transformation Γ 7→ −Γ).
Thus these 3 transfer functions have only one cut which comes

from
√

s, and some other singularities of the pole type which are
associated to the resonance modes of the piece of pipe.

This last remark implies that only the transfer functions of the

decomposed form depend on the choice of Γ. The input/output

relations do not depend on the choice of the cuts which start from

s1 and s2 (because of the curvature) but they only depend on the

cut which starts from s0 = 0 (because of the visco-thermal losses).
For this branching point, we will choose R

− for some reasons of

stability and hermitian symmetry.

In [13], Γ is given by
√

. defined by

√
. : s = ρ exp(iθ) 7→

√
s =

√
ρ exp(iθ/2), (11)

with (ρ, θ) ∈ R
+∗×]−π, π]. With this choice of Γ, the set of

the cuts is R
− ∪ C with C := {s ∈ C/ Γ(s)2 ∈ R

−}. With this

definition, Γ has the following property:

∀s ∈ C \ C, ℜe(Γ(s)) > 0. (12)

Consequently, when L increases,

∀s ∈ C \ C, T (s) = e−Γ(s)L → 0, when L → ∞. (13)

Thus, in the decomposed form of Fig. 1-(b), T (s) behaves as a
“circuit breaker” at the limit. And so, we prove the following result

∀s ∈ C \ C, lim
L→∞

Rl
g(s) = Rle(s). (14)

The function Rle is then interpretated as the global reflection

of a semi-infinite pipe (anechoic). A similar reasoning has been

done in [3] for cones.

We observe the convergence of poles and zeros of Rl
g towards

the cut C of Rle when L increases. Thus, the cut can be interpre-

tated as a densification of intertwined poles and zeros. Figure 3

illustrates this convergence with Υ > 0.
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Figure 3: Convergence of poles and zeros of Rl
g when L → ∞

(with Υ > 0). Poles, zeros and branching points are represented
by white points, black points and red crosses respectively.

3.3. Interpretation for Υ < 0

For negative curvatures, because of the part of the cut on [0, s1] ⊂
R

+, the associated functions have an infinite number of singulari-

ties which produce instabilities. But some numerical observations

show that the global transfer functions of the piece of pipe, which

have not this cut, are stable as expected.

A pipe with constant and negative curvature Υ = r′′/r has a

sinusoidal profile r(ℓ)which changes sign every Lcrit := π
p

|Υ|.
But we observe that when L increases, a pole pk of Rl

g becomes

unstable as soon as the lengthL of the piece of pipe exceeds kLcrit

(with k ∈ N
∗). Figure 4 illustrates this.
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Figure 4: Pole transition from C
−
0 to R

+, with Υ < 0.

In this case, when L → ∞ there is a densification of an in-

finite number of unstable poles on [0, s1]. Thus, for L < Lcrit

the global transfer functions of the piece of pipe are stable, but

the transfer functions of the decomposed form, which are associ-

ated to a semi-infinite pipe, have an infinite number of unstable

singularities. This phenomenum comes from the decomposition

of Fig. 1-(b) which is well adapted to digital waveguide simula-

tions with positive curvatures. For negative curvatures, we have to

search another decomposition which is adapted to waveguides and

which is stable for Υ < 0.

4. GENERALIZED FRAMEWORK

4.1. Global form and decomposed form

We have seen that the piece of pipe can be modelled by 2 systems

(cf. Fig. 1). The first is given by the two-port Q and its 4 global

functions; and the second is given by a decomposed form with 10

transfer functions.

• Global form: No matter the sign of the curvature coeffi-

cient Υ, the transfer functions Rl
g , Rr

g , and Tg are stable.

Moreover, we have seen that they have only one cut on R
−

because of the visco-thermal losses. Their simulation with

a modal approach, could allow a stable realization of the

piece of pipe. But the low-cost computation need the trun-

cation of modes, which involves some problems of realism.

• Decomposed form: This form is adapted to the waveguide

modelling, but it implies some problems of stability. With

Υ < 0 an unstable part of the cut appears on R
+.
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In the next section, we see that there is an infinite number of

forms of a piece of pipe, and then we get a parametrization in order

to find a stable realization which respects the waveguide forma-

lism.

4.2. Standard form of a piece of pipe

In a first time, we represent the 2 forms of Fig. 1 with a common

framework: the framework of Fig. 5 is equivalent to the 2 forms

(global or decomposed) if the following equations hold:

• Global form:
Hl = Rl

g, Fl = Dg, Gl = 0,
Hr = Rr

g, Fr = Dg, Gr = 0.

• Decomposed form:

Hl = Rle, Fl = D(1 + Rri)(1 + Rle),
Hr = Rre, Fr = D(1 + Rli)(1 + Rre),

Gl = RliD(1+Rri)
1+Rli

, Gr = RriD(1+Rli)
1+Rri

.

where D and Dg correspond to the transmissions T and Tg with-

out delay: T (s) = D(s) e−τs and Tg(s) = Dg(s) e−τs. The

other functions of the decomposed form are given by (8-10).

Gl GrHl Hr

Fl

Fr

e−τs

e−τs

φ+
L

φ−
0 φ−

L

φ+
0

Figure 5: Standard form of a piece of pipe

4.3. Parametrization

In a general case, the standard form (Fig. 5) allows the representa-

tion of a piece of pipe if the following algebraic equations hold

Rl
g = Hl +

`
Fl Gr e−2τs

´
/
`
1 − Gl Gr e−2τs

´
, (15)

Rr
g = Hr +

`
Fr Gl e−2τs

´
/
`
1 − Gl Gr e−2τs

´
, (16)

Dg = Fl/
`
1 − Gl Gr e−2τs

´
, (17)

= Fr/
`
1 − Gl Gr e−2τs

´
. (18)

We observe that this system of equations has 2 degrees of free-

dom. Choosing Gl and Gr as degrees of freedom, the solving of

the system (15-18) gives

Hl = Rl
g − DgGr e−2τs, (19)

Hr = Rr
g − DgGl e−2τs, (20)

Fl = Dg

`
1 − GlGr e−2τs

´
, (21)

Fr = Dg

`
1 − GrGr e−2τs

´
. (22)

Consequently, it is possible to choose arbitrarily the functions

Gl and Gr and to preserve the original input/ouput relations of the

system. And so we have a parametrization of the system with 2

functions. For example the global form corresponds to the choice:

Gl = 0, Gr = 0.
In the case of the decomposed form, the 6 transfer functions

have no internal delay, the modes of the piece of pipe are simulated

by the loop. For the global form, Gl = Gr = 0, the loop is open,

and the modes are simulated by the delays in the denominator of

the 4 other functions.

Remarks: For all causal and stable Gl and Gr , the 4 functionsHl,

Hr ,Fl andFr defined by (15-18) are causal and stable. Moreover,

the choice Gl and Gr such as |Gl(s)| < 1 and |Gr(s)| < 1, ∀s ∈
C

+
0 , allows the guarantee of the stability of the internal loop of the

system.

Now we have to find Gl and Gr which allow to guarantee the

stability and the passivity of the system, and to preserve the wave-

guide formalism.

5. STABLE REALIZATION OF CONVEX PIPE

5.1. Stabilization of convex pipes

With the waveguide approach, the “ideal” choice is this one of the

decomposed form. With

R∗
li :=

Rli(1 + Rri)

1 + Rli

D et R∗
ri :=

Rri(1 + Rli)

1 + Rri

D, (23)

this “ideal” choice is given by Gl = R∗
li et Gr = R∗

ri. But these

functions depend on Γ and they have some unstable singularities

on [0, s1] with Υ < 0. We should do another choice.

5.1.1. What can be a “good choice”?

Qualitatively, in order to understand what is a “good choice” of Gl

and Gr we can examine for example the expression of the function

Fl given by (21):

Fl(s) = Dg(s)
`
1 − Gl(s)Gr(s) e−2τs

´
.

The function Dg has a cut on R
− because of losses, and an

infinite number of pairs of complex conjugate poles in C
−
0 . Every

pair corresponds to a mode of the piece of pipe. These poles are the

zeros of the denominator of Dg which is: 1 − R∗
liR

∗
ri e−2τs. The

choice Gl = R∗
li and Gr = R∗

ri, allows the exact compensation of

the poles of Dg . With this choice, Fl has no pole as singularity,

but only the cut C of Γ.
The idea we propose and test here, is to compensate the high

frequency poles (there is a infinite number) by the internal loop

of the framework with a choice such as Gl(iω) ≈ R∗
li(iω) and

Gl(iω) ≈ R∗
ri(iω) when |ω| is high, but with Gl and Gr holo-

morphic in C
+
0 . Finally, the staying poles in low frequencies are

simulated as such in the 4 transfer functions Hl, Hr , Fl and Fr

given by (19-22).

5.1.2. How to find a “good choice”?

For simplification, we artificially modify the functionsR∗
li andR∗

ri

with a mapping s 7→ γ(s) of the complex plan:

Gl(s) := R∗
li(γ(s)), and Gr(s) := R∗

ri(γ(s)). (24)

Now the choice of Gl and Gr is done by the choice of this “map-

ping”. To guarantee a good behavior in high frequency (Gl(iω) ≈
R∗

li(iω) and Gl(iω) ≈ R∗
ri(iω)), we choose γ such as:

∀s ∈ C
+
0 with |s| high: γ(s) ≈ s. (25)

Remark: The expression “|s| high” is voluntarily imprecise. In
practice, we want that γ(iω) goes quickly towards iω when |ω|
increases.
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5.1.3. Properties of a “good mapping”

Not only γ have to verify (25), but it is also interesting to control

the singularities of Gl and Gr with the choice of γ. In a first time
the chosen mapping has to guarantee the stability and the passivity

of Gl and Gr , and if possible it has to reduce the set of their sin-

gularities. To guarantee the good definition of these functions, we

give some constraints:

P1: γ is hermitian (for real signals),

P2: γ is analytical in C
+
0 ,

P3: ] −∞, s1] ∩ γ
`
C

+
0

´
= {∅},

P4: ∀s ∈ C
+
0 , |R∗

li(γ(s))| < 1 et |R∗
ri(γ(s))| < 1.

With these properties, the choice Gl(s) := R∗
li(γ(s)) and

Gr(s) := R∗
ri(γ(s)) defines some hermitian functions (P1), holo-

morphic in C
+
0 (P2, P3 and because R∗

li and R∗
ri are holomorphic

on C \ ]−∞, s1]) and P4 guarantees the stability of the loop.
Note that the set of the cuts of Gl and Gr becomes C† :=

{s ∈ C/ γ(s) ∈] −∞, s1]} (with C† ⊂ C
−
0 thanks to P3). Thus

the mapping γ allows the “rejection” of the unstable part of the cut

of Γ ([0, s1] ⊂ R
+) in C

−
0 , this stabilize the transfer functions.

5.2. Stable digital realization

Now we give some results of stable realizations of a piece of pipe

with a negative curvature. We use the previous idea, but with some

empirical considerations.

The procedure is summarized by the following steps:

• We choose the parameter functions Gl and Gr using a map-

ping γ.

• We deduceHl,Hr , Fl and Fr .

• We approximate the 6 transfer functions using standard re-

cursive filters.

5.2.1. Definition of the mapping

In practice, instead of looking for a well defined γ in C, we limit

the search in iR (Fourier domain). Thus, we look for a contour

given by γ(iR).
In high frequencies, the contour must get closer to the imagi-

nary axis (cf. (25)), and so we choose it such as γ(iω) = iω with

|ω| > ω0, where ω0 is a pulsation we can name junction pulsation.

In lower frequencies, this contour has not only to get around

the part [0, s1] of the cut (to guarantee P3), but also to get around
the set of s ∈ C such as |R∗

li(s)| > 1 and |R∗
ri(s)| > 1 (P4).

Moreover, this contour must verify a constraint of C∞-regula-

rity on iR (necessary condition for P2). Thus, the “junction” in

ω = ±ω0 between low and high frequencies must has the conti-

nuity of all its derivatives.

In order to simulate only the 2 first modes of the piece of pipe,

the junction pulsation ω0 is chosen equal to ℑm(p2) where p2 is

the pole associated to the second mode of the piece of pipe.

Figure 6 illustrates the contour γ(iω) which gets around the
cut, and the contour line of 1.

5.2.2. Approximation and results

Previously, we have chosen a mapping γ which defines the param-

eter functions Gl and Gr . Then, we deduce Hl, Hr , Fl and Fr
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Figure 6: Phase of R∗
li and contour γ(iω).

which preserve the input/output relations of the system using (19-

22). For a given piece of pipe this choice allows the definition of a

system composed by stable transfer functions, and which contains

a stabilized delay loop (|Gl| < 1 and |Gr| < 1 in C
+
0 ), cf. Fig. 5.

For the digital realization of the system, first the transfer func-

tions Gl and Gr are approximated by standard recursive filters.

This type of approximations is presented in [11, 12]; here it need

a placement of some poles on R
−.

For Hl, Hr , Fl and Fr , the same type of approximation is

realized. Here, with |ω| > ω0, Gl(iω) = R∗
li(iω) and Gr(iω) =

R∗
ri(iω), in consequence the modes with frequencies higher than

ω0 are simulated by the internal loop of the system. Then, there

are two staying modes which are simulated by 2 pairs of complex

conjugate poles.

For evaluation, we have built the realization of a convex piece

of pipe with the following parameters: r0 = 7 cm, rL = 10 cm,

Υ = −100 m−2, L = 15 cm, et ε = 0.0033 m− 1

2 . The junction

pulsation is fitted according to the second mode of the piece of

pipe which corresponds to a pair of poles at ω0 ≈ 17 103 rad.s−1

(F0 = ω0/(2π) ≈ 2700 Hz). Every transfer function Gl or Gr

is simulated by 6 stable poles (on R
−) and every function among

the 4 other by 6 stable real poles and 2 pairs of complex conjugate

poles. The delays of the framework of Fig. 5 are simulated by

low-cost digital delays (circular buffers).

Figure 7 illustrates the frequency response of Hl and its ap-

proximation. We observe 2 lobes which correspond to the 2 first

resonances of the piece of pipe which are not simulated by the

internal loop.
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Figure 7: Hl and its approximation fHl.

The result of the simulation is illustrated in Fig. 8 by the fre-

quency response of the global transfer function Rr
g and of its sim-

ulated version fRr
g . Note that the maximal error is almost 1.9 dB,

and its mean is 0.3 dB.

DAFX-5



Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria , September 6-10, 2010

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−35

−30

−25

−20

−15

−10

−5

0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−π

−π
2

0

π
π
2

Rr
g(iω)
fRr

g(iω)

Fréquence (Hz)

d
b
(H

(i
ω
))

a
rg

(H
)

Figure 8: Rr
g and its simulated version fRr

g .

6. CONCLUSION

In this paper, we have seen in the case of convex pipes that the

use of the simulation framework of [4] produces some problems

of stability, because of the presence of unstable singularities which

are not of the pole type, but of the cut type. After an explanation of

the problem, we have proposed a “generalized” framework which

parameterizes the system with 2 degrees of freedom which are 2

transfer functions. Then in part 5 we have done a choice which

stabilizes the system and preserve the approach of [4]. This choice

allows the “rejection” of the unstable singularities to the left-half

Laplace plane, this stabilizes them. Finally, the digital simulation

of a piece of pipe has been realized with 2 delays and 6 standard

recursive filters.

The approach we use here is a little bit empirical and it needs

a theoretical study more rigorous. For example, the choice of the

mapping γ presented here, only guarantees that the singularities

leave to C
−
0 , it seems interesting to guarantee that they go to R

−

only.

Moreover, only the stability of one piece of pipe is done. For

the simulation of a whole virtual pipe, which is the concatenation

of several pieces of pipe, it is necessary to study the stability of the

whole system.
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