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Optimal control of fractional systems: a diffusive formulation

Denis Matignon

Abstract— Optimal control of fractional linear systems on a
finite horizon can be classically formulated using the adjoint
system. But the adjoint of a causal fractional integral or
derivative operator happens to be an anti-causal operator:
hence, the adjoint equations are not easy to solve in the first
place. Using an equivalent diffusive realization helps transform
the original problem into a coupled system of PDEs, for which
the adjoint system can be more easily derived and properly
studied.

I. INTRODUCTION

Fractional differential systems have become quite popular
in the recent decades, giving rise to a wide literature, both
on the theoretical and on the applied sides; monogaphs, and
special issues of international journals are now devoted to
this active research field. However, even if different scientific
communities seem to have been involved in these questions,
still very few papers are concerned with the question of
optimalcontrol of fractionaldifferential systems (in e.g. [20]
or [1], ad hoc finite-dimensional approximations of fractional
derivatives are used in the first place, and classical optimal
control methods are being applied in the second place; no
proof of convergence of the process is provided).

A first reason for that could be that optimal control of
infinite-dimensional systems is a quite involved and technical
field, but a second one lies in the very nature of fractional
operators. They are causal, but highly non-local in time (with
a weakly integrable singularity at the origin); hence their
adjoint becomes necessarily anti-causal and still non-local
in time. Thus, one can easily imagine that the complexity of
the theory for forward fractional dynamical systems becomes
even more intricate when the coupled equations of the
adjoint systems are derived; because we will be left with
coupled forward and backward fractional dynamics in order
to solve the optimal control problem: at first glance, it seems
very unlikely that Riccati equations (if any) could be either
analysed or even solved (not to speak of adequate numerical
schemes for these) in such a complicated setting.

In order to overcome this intrinsic difficulty, we propose
to use the equivalentdiffusive representations of fractional
systems, and to work on it, as for infinite dimensional
systems of integer order.

The outline of the paper is as follows: in§ II, we borrow
from [10] a primer on diffusive representation, in a causal
setting only; in§ III, the adjoints are first computed in an
input-output representation, then represented in state-space
through anti-causal diffusive realizations; finally in§ IV a
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family of fractional models are presented, with increasing
complexity: starting from a finite-dimensional model, going
through a fractional toy-model, and ending by a fully infinite-
dimensional model arising in acoustics.

II. A PRIMER ON DIFFUSIVE REPRESENTATION

In this section, we focus on thecausalsolution of a family
of first-order ordinary differential equations (ODEs). Hence,
the mathematical setting is the convolution algebraD′

+(R)
of causal distributions.

A. An Elementary Approach

Consider the numerical identity, valid forδ > 1:
∫

∞

0

dx

1 + xδ
=

π
δ

sin(π
δ )
.

Letting s ∈ R+
∗

and substitutingx = ( ξ
s )

1

δ in the above
numericalidentity, we get:

∫
∞

0

sin(π
δ )

π

1

ξ1−
1

δ

1

s+ ξ
dξ =

1

s1−
1

δ

Finally, performing an analytic continuation fromR+∗ to
C \ R− for both sides of the above identity in the complex
variable s, and lettingβ := 1 − 1

δ ∈ (0, 1), we get the
functional identity:

Hβ : C \ R− → C

s 7→

∫
∞

0

µβ(ξ)
1

s+ ξ
dξ =

1

sβ
, (1)

with densityµβ(ξ) = sin(β π)
π ξ−β .

Applying an inverse Laplace transform to both sides gives:

hβ : R+ → R

t 7→

∫
∞

0

µβ(ξ) e−ξ t dξ =
1

Γ(β)
tβ−1 . (2)

B. Input-output Representations

Let u and y = Iβu be the input and output of the
causalfractional integral of orderβ, defined by the Riemann-
Liouville formula y = hβ ⋆ u =

∫ t

0
hβ(t− τ)u(τ) dτ in the

time domain, which readsY (s) = Hβ(s)U(s) in the Laplace
domain.

Using the integral representations above, together with
Fubini’s theorem, we get:

y(t) =

∫
∞

0

µβ(ξ) [eξ ⋆ u](t) dξ

with eξ(t) := e−ξ t, and [eξ ⋆ u](t) =
∫ t

0 e
−ξ (t−τ) u(τ) dτ .



Now for fractionalderivativeof orderα ∈ (0, 1) in the
sense of distributions of Schwartz, we haveỹ = Dαu =
D[I1−αu], and a careful computation shows that:

ỹ(t) =

∫
∞

0

µ1−α(ξ) [u− ξ eξ ⋆ u](t) dξ

C. State Space Representation

In both input-output representations above, introducing a
state, sayϕ(ξ, .) which realizes the classical convolution
ϕ(ξ, .) := [eξ ⋆ u](t) leads to the following diffusivere-
alizations, in the sense of systems theory:

∂tϕ(ξ, t) = −ξ ϕ(ξ, t) + u(t), ϕ(ξ, 0) = 0 , (3)

y(t) =

∫
∞

0

µβ(ξ)ϕ(ξ, t) dξ ; (4)

and

∂tϕ̃(ξ, t) = −ξ ϕ̃(ξ, t) + u(t), ϕ̃(ξ, 0) = 0 , (5)

ỹ(t) =

∫
∞

0

µ1−α(ξ) [u(t) − ξ ϕ̃(ξ, t)] dξ . (6)

These are first and extended diffusive realizations, respec-
tively. The slight difference between (3)-(4) and (5)-(6),
marked by thẽ notation, lies in the underlying functional
spaces in which these equations make sense:ϕ belongs to
Hβ := {ϕ s.t.

∫
∞

0 µβ(ξ)|ϕ|2 dξ < ∞}, whereasϕ̃ belongs
to H̃α := {ϕ̃ s.t.

∫
∞

0
µ1−α(ξ)|ϕ̃|2 ξ dξ < ∞}, see e.g. [6,

ch. 2] or [14].

III. ADJOINTS OF FRACTIONAL SYSTEMS

A. Adjoints of Fractional Integrals

On L2(0, T ), the adjoint of Iβ
0+, the causal fractional

integral of orderβ ∈ (0, 1) defined by

y(t) := I
β
0+u(t) =

1

Γ(β)

∫ t

0

(t− τ)β−1 u(τ) dτ

is Iβ
T−

, the anti-causal fractional integral of the same order,
defined by

v(τ) := I
β
T−
z(τ) =

1

Γ(β)

∫ T

τ

(t− τ)β−1 z(t) dt .

In order to avoid to tackle such hereditary operators, we
make use of the equivalent diffusive realizations introduced
above, both for the direct and the adjoint systems. Indeed,
the forward dynamical system defined by

∂tϕ(ξ, t) = −ξ ϕ(ξ, t) + u(t), with ϕ(ξ, 0) = 0 (7)

as initial condition, and ouputy(t) =
∫
∞

0
µβ(ξ)ϕ(ξ, t) dξ

provides a realization ofy = I
β
0+u.

Whereas thebackwarddynamical system defined by

∂tψ(ξ, τ) = +ξ ψ(ξ, τ) − z(τ), with ψ(ξ, T ) = 0 (8)

asfinal condition, and ouputv(τ) =
∫
∞

0 µβ(ξ)ψ(ξ, τ) dξ is
a realization ofv = I

β
T−
z, (we refer to [9] and [10] for a

first introduction of anti-causal diffusive representations).
Then, the fundamental equality holds:

(Iβ
0+u, z)L2(0,T ) = (u, Iβ

T−
z)L2(0,T ) . (9)

It comes easily from two properties:

1) for a.e.ξ > 0, (ϕ(ξ, .), z)L2(0,T ) = (u, ψ(ξ, .))L2(0,T ),
which proves straightforward for first order ODEs like
(7)-(8);

2) linearity, provided awell-posednesscondition is ful-
filled by measureµβ (see e.g. [14]).

B. Adjoints of Fractional Derivatives

An extension of these results to fractional derivatives
can be done, but care must be taken that they are no
more bounded (even compact in fact); the unboundedness
of the fractional derivative operators gives rise to a specific
diffusive formulation, see again [6, ch. 2] for the questions
of domains. The key ingredients are:

ỹ = Dα
0+u =

∫
∞

0

µ1−α(ξ) [u− ξ ϕ̃] dξ , (10)

ṽ = Dα
T−
z =

∫
∞

0

µ1−α(ξ)
[
z − ξ ψ̃

]
dξ . (11)

And the fundamental equality reads:

(Dα
0+u, z)L2(0,T ) = (u,Dα

T−
z)L2(0,T ) , (12)

which now comes from the definition of the domains, for a.e.
ξ > 0, (u−ξ ϕ̃(ξ, .), z)L2(0,T ) = (u, z−ξ ψ̃(ξ, .))L2(0,T ) and
linearity, provided the well-posedness holds onµ1−α.

IV. MODELS UNDER STUDY

The objective is to minimize the energy functional
J(ue) = 1

2

∫ T

0
‖X(t)‖2

H + ue(t)
2 dt with an external input

ue on the following controlled dynamical systems: an oscil-
lator damped by memory variables, a fractionnaly damped
oscillator (both these two can be seen as toy-models), and
the Webster-Lokshin wave equation.

A. An Oscillator Damped by Memory Variables

The finite-dimensional model of an oscillator damped by
two types of memory variables:

ẍ+ ỹ + ẋ+ y + ω2 x = ue ,

with three types of damping:

• ẋ = u, instantaneous w.r.tu;
• y(u), with memory and low-pass behaviour: measureµ

consists of finitely many (K) Dirac measures located at
someξk with positive weightsµk;

• ỹ(u) with memory and high-pass behaviour: measureν

consists of finitely many (L) Dirac measures located at
someξl with positive weightsνl.

B. A Fractionally Damped Osciallator

LetK andL go to infinity, in a way that is consistent with
the fractional integral of orderβ y = I

β
0+u and the fractional

derivative of orderα, ỹ = Dα
0+u, respectively; this is a toy

model, a fractionally damped oscillator, studied in [13], and
for which elementary propreties and numerical simulations
have been presented in e.g. [2].

ẍ+Dα
0+[ẋ] + ẋ+ I

β
0+[ẋ] + ω2 x = ue ,



The above framework is well suited to the formulation of the
optimal control problem of this system in a classical setting,
with no more fractional operators and no more heredity.

C. Webster-Lokshin Wave equation

Now, the fully infinite-dimensional model of interest, is the
Webster-Lokshin wave equation with a somewhat idealized
boundary control operator:

∂2
tw+ε(x)D

1/2
0+ [∂tw]+d(x) ∂tw+η(x) I

1/2
0+ [∂tw]−∂2

xw = 0 ,

for 0 < x < L and t > 0, with boundary control atx = 0,
and initial conditions. Providedε(x) > 0, d(x) ≥ 0 and
η(x) > 0, existence and uniqueness of solutions of this
system can be proved, once the diffusive reformulation has
been used, see e.g. [6, ch. 2] and [5]. The optimal control
problem, formulated in the new framework presented above,
will become tractable with the theory of optimal control
problems for linear PDEs, because the system is now no
more than the coupling of a 1D wave equation with two 1D
diffusion equations.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A general framework has been presented to reformulate
optimal control problems for fractional differential systems
into optimal control problems for PDE systems, thanks to
a diagonal realization of fractional integrals and derivatives,
known as diffusive representations.

An interesting family of examples of increasing complex-
ity has been detailed, which proves useful in continuum
mechanics and acoustics.

During the conference, numerical simulations will be pro-
vided to illustrate the practical feasability of this approach,
and more precise theoretical results at hand will be given.

B. Future Works

First the examples above will have to be fully worked out.
Then, numerical simulations will be studied, using differ-

ent methods which do rely on the numerical implementation
of diffusive representations, such as [6, chap. 3], [5], [18],
or more recently [7]; some do not, like [19].

Note that the infinite-time optimal control problem, i.e.
T → ∞, could prove difficult, technically speaking, because
the type of asymptotic stability for fractional systems is never
exponential, but algebraic; hence, admissibility conditions
could be more severe in the long rangeT → ∞.
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