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Systems control theory applied to natural and
synthetic musical sounds?

Denis MATIGNON* and Brigitte D’ANDREA-NOVEL' #
April 2010

Context. This research report sums up the research carried out under the
title: Systems control theory applied to natural and synthetic musical sounds,
which was supported by the CONSONNES (CONtrole de SONs instrumentaux
Naturels Et Synthétiques) project, supported by the French National Research
Agency (ANR), under grant ANR-05-BLAN-0097-01.

A structured (special) session MUO7 : Control of natural and synthetic mu-
sical sounds was organized by J. Kergomard and M. Wanderley for Acoustics’08
Paris international conference, in July 2008; this conference was co-organized
by the Acoustical Society of America (ASA), the European Acoustics Associa-
tion (EAA) and the French Acoustical Society (SFA). The opening talk, by both
authors, aimed at giving an overview presentation of the links between systems
control theory and simulation of natural or synthetic musical sounds. The present
research report is an extended version of the talk.

Abstract. Systems control theory is a far developped field which helps to
study stability, estimation and control of dynamical systems. The physical be-
haviour of musical instruments, once described by dynamical systems, can then
be controlled and numerically simulated for many purposes. The aim of this
paper is twofold: first, to provide the theoretical background on linear system
theory, both in continuous and discrete time, mainly in the case of a finite number
of degrees of freedom; second, to give illustrative examples on wind instruments,
such as the vocal tract represented as a waveguide, and a sliding flute.
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Abstract— Systems control theory is a far developped field Numerical simulation is an important tool for the valida-
which helps to study stability, estimation and control of dynam-  tjon and investigation of theoretical models, providedttha
ical systems. The physical behaviour of musical instrumest he fidelity to the continuous time model or to physical
once described by dynamical systems, can then be controlled measurements is respected. It is natural that such nurherica
and numerically simulated for many purposes. The aim of this R
paper is twofold: first, to provide the theoretical background ~Models could be used to estimate parameters based on
on linear system theory, both in continuous and discrete tilm, measured output signals. This problem is linked to the
mainly in the case of a finite number of degrees of freedom; observability property of the system. Indeed, this will be
second, to give illustrative examples on wind instrumentssuch e first step to addressverse problems recovering the
ﬁﬁtér_]e vocal tract represented as a waveguide, and a sliding full oscillating internal state of the physical model from-e

. ternal measurements only, considering the control asliocal
INVEIS&onstant; the second step would then consist in computing
this control parameter from the recovered state, using e.g.
adpative filtering techniques, see e.g. [35].
|. INTRODUCTION A robot musician, independently of how controllable it

Musical instruments can be modelled as dynamical sy&night be, is generally deaf, and thus unable to adapt its

tems, which can be decomposeed into a linear resonat§havior in response to the sound it produces. That is why
excitated through a non-linear oscillator. Hence, the ddh€ introduction of deedback loopbased on the measured

velopment of theoreticamodels with a high degree of output signals will be necessary to obtain better sounds.

refinement with respect to both the asymptotic regime as "€ Present paper is devoted to the application of mod-

well as transient behavior is of great musical importancé!/ing and control theory to a wide class of dynamical
Moreover, related numerical simulation methods, as weffyStemsmusical instrumentsvhich exhibit a rich variety of

as joint experimental work are fundamental, and imply g)ehaviors: they can be modeled either by Ordinary Differ-

broad interaction among researchers coming from a widghtial Equations (ODEs) or by Partial Differential Equato
variety of disciplines such as acoustics, control theagnal (PPES)' linear or pon-lmegr, with or ,W'thOUI time delays,
processing and numerical analysis. using constant or time-varying coefficients, etc.

Mastering the playing technique of an acoustic instrument The outline of the Paper IS the_ fOHO_W'ng:_ .
(i.e. its control) is a difficult and lifelong pursuit. In g - In § I, we consider the finite dimensional setting (a
ular, it is important to characterize thetability property finite number degrees of freedom). nll-A and § II-
of an operating mode in order to prevent false notes. The B+ We give stability, controllability and observability
quality and reproducibility of a musical performance depen ~ Properties and define the synthesis of observer-based
on the level of technique that has been reached. This tech- controliers (OBC) for both state estimation and control
nique could well be described in terms of various system PUrPoses. Ir§ II-C, we illustrate these on the example
parameters: physical parameters of the instrument and-extr ~ Of Kelly-Lochbaum structure for digital waveguides. In
parameters applied by the player to the instrument, which © !I-D. realization theory and feedback structure for
we call control inputs. The ability to modify the behavior viscoelastic damping models are then presented on the
of the instrument relies on what is called teentrollability example of a standard 1 d.o.f. oscillator.

Keywords— state space, stability, control, observation,
problem, oscillators, damping.

property of the system - In § 1lll, we consider the infinite dimensional case
(infinitely many d.o.f.) for which we also introduce
This work is supported by the CONSONNES project, notions from control theory i§llI-B, with an emphasis

ANR-05-BLAN-0097-01 on boundary control for stability using Lyapunov tech-



niques (i.e. energy based methods). The elaboration of 3) Stability: The system is said to bexternally stable

the control is made easier once the hyperbolic PDEshen any bounded input gives rise to a bounded ouput, that is
have been diagonalized thanks to Riemann invariantathen [, [|2(t)|| dt < oo or, equivalently, when the transfer

in § IlI-A. This technique is fully illustrated irf 11I-C  matrix s — H(s) hasno poles in the closed right half

on the example of a sliding flute. Finally i I1l-D,  plane Re(s) > 0, that is if and only ifa < 0. Only in this
some damping due to viscothermal losses is introducexhse are we allowed to compute thaurier transform(FT)

in the flute model, and it is shown how the realizatiordirectly from the LT:

technique with memory variables helps to reformulate . Y

the model into a dynamical system, and study its h(f)i=H(s=2irf), VfER,
stability thanks to an appropriate Lyapunov function. where f is the analog frequency expressedfx.

The system is said to basymptotically stablevhen the
free trajectories converge to in the phase spacR": this
happens if and only ifRe(spec(A)) < 0, i.e. matrix A has

Il. FINITE DIMENSIONAL CASE no eigenvalues in the closed right half plane

We give definitions, and select most important propertiets0 t)eggrﬂtrgmw fi?ir?bs.e rvaklalll[t'y.ISystzr.Tt? (nl))(|s said
that are standard fdinear finite-dimensional systems, which . y given initial conditiont,, any
can be found in more details in e.g. [31]. Two theoreticaﬁIme r angl any final cond|t|onXT,_ there exists a_control
frameworks are presented: the continuous-time setting f&p. 38 of finite energy oro, 77, Wh'.c h allows to drlve_ the
ordinary differential equations i Il-A, and the discrete- Initial state to the f|_n_al one. To this end, let us define the
time setting for ordinary difference equationssinl-B. Two n x (nm) controllability matrix:
examples are then developped, as applications to acoustics c2 [B AB - A”*lB} . 3)
in § 11-C, or to mechanics ir§ II-D.

The fundamental property is that the system is controllable
_ - on [0, T if and only if C has rankn. Hence, the controlla-
A. Control, Observation and Stability of ODEs bility of the system is that of the pair of matricés, B).

A scalar ODE ofnth order in time can be transformed System (1)-(2) is said to bebservableif the state of

into a first order ODE with vector values, it is enough to sefl€ free system(= 0) can be recovered or reconstructed
X = [z - ("] as state vector. from output measurements only, that is the possibility to

reconstruct X, from the only knowledge of the output
— y(t) on [0,7]. To this end, let us define th@yp) x n
observability matrix:

1) Mathematical setting: Consider the following
continuous-time dynamical system

d
ZX() = AX(0)+Bu(t) ¥t>0, X(0) = Xo,(1) CCA
y(t) = CX()+Do(t), ) 04 (4)
with vector-valued functions of time: cArt
« input, or controlv: a vector of dimensiomn, The fundamental property is that the system is observable on
« state vectorX of dimensionn, [0, T] if and only if O has rankn. Hence, the observability
« output, or observation or measurementa vector of of the system is that of the pair of matricéd, C).
dimensionp. Hence, both controllability and observability can be

checked thanks to simpkdgebraic criteria Another notion

The matrices in (1)-(2) are : o . . .
is important and linked to the previous ones: the notion of

« input matrix B, of dimensionn x m,

X | ) } minimality .
« matrix of dynamicsA, of dimensionn x n, Given a state-space representatich B, C, D), and an
« output matrixC, o_f dlmens_lonp X, invertible square matrix? € GL,(R), it can be easily
« feedthrough matrixD, of dimensionp x m. seen tha{P~! A P, P~ B,C P, D) gives rise to thesame

2) Solution: This system is affine, so when there is ndransfer matrix 4, hence the same input-ouput behaviour;
control @ = 0), the free solution read¥ (t) = ¢4 X, ; a useful application is the celebratewdal decomposition
on the contrary when the initial condition is zer&{ = 0), which consists in choosing such that”"~! A P be diagonal.
the forced solution of the system can be written in the tim&low, a state-space representatioA, B,C, D) of some
domainy(t) = Dv(t)+fg Ce'=94 By(s)ds, ory = hxv  given input-ouput system is said to einimal if the size
with impulse responsé(t) = D y(t) + Ce!“ B fort > 0 n of the state space is the lowest possible, which gives the
and in the frequency domain, thanks to causal or one-sidesdme transfer matri¥{. A nice theorem, due to Kalman,
Laplace transform(LT), Y (s) = H(s)V(s), with p x m  states that:
transfer matrix (A, B) is controllable
(A, B,C, D) is minimal < and
H(s)=D+C(sI, — A)"'B, for Re(s)>a. (4,C) is observable



In this latter case, both notions of stability do coincide: i one-sided:-transform(zT), Y (z) = H(z) V(z), with p x m
other words, all the eigenvalues of thex n matrix A are transfer matrix
poles of H. -1

5) Observer-Based ControllersThe stabilization of an H(z) =D+ Clz L= A)7B, for [z]>p.
unstable system is possible when it is controllable, thaoks 3) Stability: The system is said to bexternally stable
a feedback control law of the form= K X +w, wherew  when any bounded input gives rise to a bounded ouput, that
is an external input; the: x n feedback matrixk’ must be is when}",° ;||| < oo or, equivalently, when the transfer
chosen so that the matrid + BK be stable, i.e. it has no matrix z — H(z) hasno poles outside the open unit disc
poles in the closed right-half plane. |z] > 1, that is if and only ifp < 1. Only in this case are

In this stabilization process, one has to use the full state we allowed to compute the discrete Fourier transform (DFT)
of the system, which is never measured in practise. That ifrectly from thezT:
the reason why it will be estimated. This latter estimation . 0 11
of the full state X from the only knowledge of external h(v):=H(z=¢"""), Vve(-3,3)

measurementg is possible, under the above observability, hore ;, is the dimensionless discrete frequency, such that
hypothesis. Let us define the estimated stdtas follows:

the corresponding analog frequency redds v/Ts.

d - N The system is said to basymptotically stablevhen the
EX(t) = AX(@O)+Let)+Bo(t), X(0)=0,05 free trajectories converge to in the phase spacR": this
gt) = CX@)+Dud), (6) happens if and only ifspec(A)] <1, i.e. matrixA hasno
0 — ot . 7 eigenvalues outside the open unit disc
et) = 9(t) —y(). () "4y Controllability and Observability:The definitions and

The dynamics of the estimated stafeis now driven by the Notions of controllability or{0, V] are the same as in contin-
output error measurement through then x p matrix L, UYous time, as summarized inll-A.4, the only difference is
which must be chosen so that the matdx- LC be stable, that the numberV of time steps for control or observation
i.e. it has no poles in the closed right-half plane. Then, thB€€ds to be greater than or equal to the state dimension:
coupled system can be easily studied in fie X — x] N =n otherwise the properties are not equivalent.
coordinates, and theeparation principle due to Kalman, Here again, both controllat_)|l|ty and obse_rvapmt)_/ noson
proves that the estimated state converges asymptotically ¢an be checked thanks to simple algebraic criteria, rank

to the full stateX; moreover, the dynamics of the feedback©r C in (3) or O in (4). _ _

system with control laww = K X + w is now stable. See  1he discussion ominimal representatioralso applies to

e.g. [8] for an application of this to inverse problems. t_he discrete time setting, with the interesting consegegnc
listed above.

B. Control, Observation and Stability of discrete-time-sys 5) Observer-Based ControllersThe stabilization of an

tems unstable system is possible when it is controllable; and the

estimation of the full state from the measurements is péssib
when the system is observable. Thus, as in continuous time,
the separation principle applies, and efficient obsenased
controller can be built, provided the system is minimal, and
[k g1 x’“‘,("—”]' _ , . both A+ BK, A+ LC are stable, i.e. their eigenvalues are
: 1) Mathematwal settingConsider the following discrete- o164 inside the unit circle. A specificity of discrete éim
time dynamical system relies on the existence of exact observer in a finite number of
Xps1 = AXy+Bu, forkeN, andXo, (8) steps: it is enough to choodesuch that aII_the eigenva_lues
of A+ LC are0, so that the observer will be exact in at
mostn steps: these are called deadbeat observers.

with the same size of matrices as before, §ek-A.1. It C. Application to a pipe modelled by a connection of cylin-
must be taken care that, even if the letters being used are thers
same, the meaning is different in ponti_nuous ordiscrgti,‘[im 1) Physical model: Following [18], [32], or [33] and
Ior samp_led-data system.s, there is a link suckias= . references therein, we uniformly discretize the profile of a
or _the discrete _and co_ntlnuous matrices of dynamics, Whe%leCoustic tube inn elementary cylinders of length, and
T; is the S?‘mp"”g period. . . . radii R;, and write the conservation laws for pressure and
2) Solution: This system IS affine, so whenk there is NQolume velocity at the interfaces: decomposing the sotutio
control (v = 0), the free solution readX;, = A" Xo ; 0N 5 ingoingandoutgoingwaves, we obtain a classical Kelly-
the contrary when the initial condition is zerd{ = 0),

. ) _ . _Lochbaum network with reflection coefficients related to
the forced solution of the system can be written in the timg impedanceg; — 25,

T R2"
domainy, = Doy + Y5} C AR "1 By, ory = h $ v i
with impulse responsé, = D andh;, = C A*~! B when  Zi—Ziy1  Ri? — R

k > 1; and in the frequency domain, thanks to causal or i Zi+ Ziyq B Rit1?2 + R (10)

A scalar difference equation ofth order in discrete time
can be transformed into a first order difference equatioh wit
vector values, it is enough to set as state vector E,g=

yr = CXp+Du 9
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Fig. 1. Three equivalent representations of the discrétizzeal tract: (top):
original volume velocity variables, (middle): delayed iedtes, (bottom):

normalized and delayed variables.

« the direct link matrix

(1)

3) Analysis of the modelFollowing [19], we can con-
clude to:

« stability, since|r;| < 1 and the characteristic polyno-
mial of A,, is a Levinson polynomial,

« controllability, thanks to computations 6,

« Observability, thanks to computations 6,

so far for the bi-port system, i.e. 2 input and 2 outputs, also
called a MIMO system (multi input, multi output).

4) Boundary conditions: Taking into account static
boundary conditionsat both ends of the pipe amounts to
applying afeedback loopon the system, and makes it a
dipole or SISO system (single input, single output).

In the case ofrequency independentflexion coefficient
Ry at thelips and Rg at the glottis, the two ends of

0 1

00 (14)

and delays on each branch of the network; sampling the Sighe transmission line, we obtain a closed-loop system with
nals, delaying and normalising them gives rise to a clabsicaultipliers in the feedback loop. These static boundary
lattice filter with delays on the upper branch of the networkconditions applied to a lossless transmission line leadhéo t

only, see bottom of Fig. 1.

2) Mathematical model:Taking then delayed and nor-
malized quantities as state variables, the= 2 ingoing
waves (at the opposite ends) as inputs, and ghe= 2

outgoing waves (at the opposite ends) as outputs, foIIowmg

[19], [20], we obtain the following state space represeotat
of the network in discrete-time, of the form (8)-(9), witheth

special choice of variables:
« input vectorv = [Y;TY,~
« State vectorX =

| of dimensionm = 2,
[Z_l 5/1+ v

2~1Y,*] of dimensionn,

« output vectory = [Y,;FY;"] of dimensionp = 2.

and corresponding matrices:
« the matrix of dynamics

A, = (11)
0 0 0
L=mr= —rry —T1Tn-1
O 1-— 7’22
0 —Tn—2Tn—1 0
0 e 0 1—rp12 0
« the two columns of the control matri®,,
1 0
0 1
bl = b, = (12)
0 Tn—1
« the two rows of the observation matr%,
¢, = ( —-n —rp_1 0 )
(13)
o = (0 0 1)

following matrix of dynamics:

—Rgr1  —Rgr2 —RgRpL
1—r2 e —ryr —r R
1 rire 1T 1 iR,
= 0 1—rp?
Y : —Tn—2Tn—-1 ~—Tpn—2RL
0 0 1—r 2 —r R
n—1 n—1*L

It is nicely structured as follows:

Adipote(Rc, R1)
bt, and

The control column matrix ishgpoe = (£2) b3,
the observation row matrixgipole = (1 + Rz) ¢;}, with no
feedthrough constanti§pole = 0).

In a more general case however, the boundary conditions
are not static butdynamical when the reflection coefficients
at the boundariedepend upon frequengye. w — Rg (i w),

w +— Rp(iw)) — which is the case as soon as the physical
description at the boundaries is slightly refined —, the exliss
loops at the two ends of the transmission line are in fact
loops of feedback system3aNe first proceed to a causal
and minimal realizations of these two transfer functiorte in
discrete-time dynamical systems, namél;, be, ca, da)
with state vectorzq for Rg, and (Ag, by, cr,dr) with
state vectorr;, for Ry. Then, thanks to the augmented state
X, = [z X' 2] of dimensionn, = ng +n+nyg, itis not
difficult to build the global system, for which the matrix of
dynamics reads:

= A,—Rgble, —Rub, ¢t —RaRibl ¢,

Ag  ba (¢, —drc)) —bg cr,
Ag=| biee Adpoelda, dr) — (b, +dpb)) c
0 br, C;t Ap

Autonomous dynamics can be seen on the block diagonal,
while coupling is represented by off-diagonal ternis;, R,



in the static case have now been replacedibyd;, respec- with energy ¢; > 0) Eu(t) = %Zle v & W(t) and

tively. energy balance:

These ideas stemming for automatic control will now be I
presen'Fed iq details.on another example:. an augme.ntgd state Ey=— ZVI (- +vz (22)
space is built, that is devoted to the refined description of =1
damping, th_uts)lmtroducmg extra state variables (So'da"el\lote that gpositiveaggregation of RL-circuits is passive and
memory variables). high-pass 46 dB/oct):
D. Application to damping models of classical oscillators L s

In this subsection we show how realization theory together HI%L(S) = Z g s with 1, > 0.

=1

with an energy (or Lyapounov) analysis is helpful for both
the simulation in time domain and the stability analysisince one RL-circuit is |32assive and high-pass (dB/oct):
of oscillating systems damped by a collection of memorjndeed,Re(Hpy(s)) = ELERIE > o for Re(s) > 0.

2
variables. This toy model is detailed here so as to prepare el
a nice (but somewhat more involved) extension to fraction: - rosiionx - and veosiyv - ) Phase portait (x, v)
derivatives coupled to a wave equationgiml-D below.
1) The model:We want to analyze a 1-d.o.f oscillator, s ‘ 05
modelled by:
2 0
Frz+ity+wicz=0, (15)

velocity v

with 3 different types of damping: i

e T = v, instantaneous w.rd, ASATA e S 7 B
o y(v), with memory, low-pass behaviour, Ll
« z(v), with memory, high-pass behaviour, ‘
We now detail the last twdilters, and provide passive 5% % % = T e o s
minimal realizations for them. et postion x
a) Low-pass filters:A number K of RC circuits with
input v and outputy can be realized by the dynamical _ Diswe components

system:
0]

y(t)

=)

—&k dr(t) +o(t), ¢r(0)=0  (16) °
K

> 1k 6k (t) (17)

k=1

with energy fu. > 0) Ey(t) = +S°0 we é%(t) and
energy balance:

K
Eqb = — Z MK gk ¢i +v Yy (18) 25

k=1 time t

Note that gpositiveaggregation of RC-circuits is passive andFig. 2. Oscillator with memory damping. (top left): posiiie and velocity
low-pass (6 dB/oct): v versus time, (top right): cut in the phase spdae v) € R? , (bottom
left): diffusive variablesgy, (t) and;(t).

K
Hpo(s) =Y . +15k with p > 0. (19) 2) Analysis of the coupled systerithe analysis of the
k=1 1-d.o.f oscillator (15), with associated mechanical eperg
since 1 RC-circuit is passive and low-pass6(dB/oct): Ep(t) := 3v%(t) + tw?x*(¢), can be easily performed
indeedRe(Hpro(s)) = % > 0 for Re(s) > 0; and for thanks to an augmented energy,Llorapunov functional
any causal inputv of finite energy, fooo y(t)ot)dt = —E, +Ey+E
Lo af = fH@im) A = CimEn Bt By
2f0°° Re(H (2 f)) |o(f)[>df > 0. of the global system, with internal variablds, v, ¢, v].

b) High-pass filters:A numberL of RL circuits with  Indeed, using (18) and (22), we get:
inputv and output can be realized by the dynamical system:

Gi(t) = =&t +o(t), $u0)=0  (20)
2(t) = EL: v (v(t) — &) (2) (21) Hence, we can conclude to asymptotic stability,d.€) — 0
=1

K L
SZ—UQ—Zngk(ﬁ;_ZVl (v—&)? <0.
k=1 =1

ast — +oo, thanks to LaSalle’s invariance principle, which



is easy to apply in finite dimension. Note that there is nalynamical properties (23) neglecting the viscous and thérm
reason for the mechanical enerdy,,(t) to be a strictly effects near the walls:
decreasing function of time.

This behaviour is clearly illustrated in Fig. 2; especially @ — _§@ (23)
the behaviour of the diffusive components (on bottom left) ot po Ox
highly depends on the values §f (short-time memory for and the mass conservation law (24)
greaté, or long-time memory for smayy). )
dp ~ poc ou (24)

1. I NFINITE DIMENSIONAL CASE ot S, o

In this part, we consider the case of wind instrumentfead to the wave equation also known as d’Alembert equa-
which can be seen as time delay systems. In fact, a wiRgn:

instrument is usually made of a linear acoustic resonaler (t

pipe) coupled with a nonlinear oscillator (the mouth of the Pp 20 _ (25)
instrument) (see e.g. [16], [6]). The resonator can be neatlel ot? ox2

through hyperbolic wave equations. We will first recall the Equations (23) and (24) allow to write the system dynam-
d’Alembert equation ing IlI-A, its controllability property ”

in the case of ideal boundary conditions of Cauchy type iffS In the following state-space form withi =

§ 1lI-B, together with the notion of exponential stability of

a periodic orbit corresponding to a desired note. X A@_X 0. with 4 — < 0 Sp/po ) (26)
Then, in§ III-C, we will consider an example of alide ot ox —\ poc?/S, 0 ‘

flute, that is a kind of recorder without finger holes but whichThis representation can be diagonalized :

is ended by a piston mechanism to modify the length of the '

resonator (see Fig. 3). The fact that we can control the pisto _ c 0

produces a moving boundary system. But it will be possible OZ + N0, Z =0, with A = ( 0 —ec ) (27)

to control this virtual instrument and stabilize a periodibit ] o

through a suitable control of the pipe length. The proof o¥vhere the change of coordinates is given by :

stability will be handled using a Lyapunov function, e.g. a g
kind of energy function which can decay w.r.t. time using a u+ —p
suitable boundary feedback to control the pipe length. This 7 = ( g ) = '%90 (28)
result will be obtained assuming an ideal boundary condlitio u——Lp
at the mouth of the instrument, saying that the pressure at poc
the entrance of the pipe is zero. and

Note that in another paper [5], the authors consider a atp
more realistic model of the mouth, taking into account the [ uw Y\ 2

. o X = = . (29)

coupling effects between the acoustic field of the resonator p poc(a — B)
and the air jet obtained by blowing through a flue channel 25,

and formed by flow separation at the flue exit. The resultinqhe eigenvalues > 0 and —c < 0 being respectively the
boundary conditions are much more complicated and ha\</ locity of the ingoing waven(z,?) and of the outgoing

been_ Imeanzed_ to perform a modal &_malyss a!’ld a contrg ave 3(z, 1). a(x,t) and 3(x, 1) satisfy two classical wave
algorithm. But in that case, the stability question and th%quationS'

elaboration of an associated Lyapunov function remain open
(see also [7] for details). This is the reason why we have da Ao

chosen to consider a simplified boundary condition at the ot + ‘9z 0 and (30)

entrance of the pipe to be able to perform the stability

analysis of the periodic orbit through Lyapunov analysis. % _ % —0 2
Finally, in § 11I-D, we examine the introduction of damp- ot ‘or 1)

ing in the flute model, and make use of the toy model, a§jnce (s, t) and 3(x, t) are constant along the “character-
developped ir§ II-D, to reformulate the system in view of jstic curves”, o and 3 are called theRiemann invariants
his control. (see e.g. [30, Tome II, Chap. 12]).

A. Physical model of the pipe Let us introduce the following notations:

We will denotep, the fluid (here the air) density at rest,
S, the constant section of the pipe which is supposed to be  «ag(t) = a(x = 0,t) andBy(t) = B(z = 0, 1). (32)
cylindrical. We assume that the flow ratér, ¢t) at timet¢ and
point z: in the pipe and the relative pressysér,t) = P — _
Paim (Paim denoting the atmospheric pressure) are uniforrf0: T
on a section. Therefore the Euler equation, giving the fluid a(z,t) = aot — =) (33)

Then, the behavior of(z,t) is a time delay system from



and conversely we have: C. Boundary control of a slide flute

Bz, t) = Folt + ). (34) a) The control_ modeI.S_lnce we modify the_ Iength
of the resonator using the piston, the boundary is moving.
We will denote in the sequel, the delay due to the length Therefore, as it has been done in [3] in the case of an

of the pipe: overhead crane with gariable length flexible cable it is
— L (35) interesting to apply the following change of variable
p— -

B. Controllability and Stability of a simplified Cauchy prob r=Lo (42)

lem

to transform the system in a one with a fixed spatial domain
Using (25), we consider in this section a simple Cauchyor o, ie.o e [0,1].

problem of the following form:
2 2
Ip 207 (36) { d(o,1) = ale,t) = a(L(t)o, 1) @)
g

ot? 0x? 5
o,t) = B(x,t) = B(L(t)o,t
fort € [0,7] andz € [0, L] with boundary conditions: _ (%) (@2) (L))
equations (30) and (31) become:

According to (41), if we denote:

p(L,t) =0, pz(0,t) = v(t). (37) i . .
f&! c— Lo\ 0a
Equations (36) and (37) can model a wind instrument with E(U t) < 7 ) 3_0(‘77 t)=0
a lossless resonator of length an open end corresponding . . . (43)
to p(L,t) = 0 and a controlled flow at the entrance corre- %( )— c+ Lo %(U H=0
sponding top.(0,¢) = v(t), v(t) being acontrol function ot L oo

Let us also consider initial conditions: . . L .
We still have two wave equations, but with time variable

velocities depending on the pipe length and on the control
p(z,0) =p°(x) , pe(x,0) =¢°(z), = € [0,L]. (38) variableL.
Let Us denoteH(lo)(O,L) the Sobolev space: b) The bouanry conditionsThe ideal case ofa mouth_
aperture and a rigid closed end due to the piston mechanism
{p € L*(0,L), p. € L*(0,L), p(0) =0}. is such that the slide flute can be viewed as a closed-open
pipe for which the fundamental frequengyof the note is

Assuming thatp® belongs toH, (0, L) and ¢ belongs  o|ateq to the pipe length as follows (see e.g. [27], (1)L

to L2(0, L) we have the following controllability result (see .
e.g. [36], [9, Sec. 2.4.2)): f=qr (44)

Theorem 1. Let T' > 2L. The control system (36)-(37) we have considered a lossless model without friction. More-
is controllable in time T, that is: for every (1°,¢°) € over, as we have already said in introduction, we do not
H,(0,L) x L?(0,L) and every(p'.q') € H(,(0,L) X  consider any mouth model excited by a blowing pressure, but
L*(0,L), there existsu(t) € L*(0,7) such that the so- only a simplified model with an ideal mouth aperture leading
lution p of the Cauchy problem (36)-(37)-(38) satisfieso a zero pressure at the entrance of the flute. Consequently,
(p( 1), pe(T)) = (', ") with suitable initial conditions for the pressure and thevflo

Let us now recall the so-called exponential stability propdosfj to the desired eqU|I|br|fL|1m orbit, it is not nelcessaryvtv
erty of an equilibrium point or equilibrium orbie(z, £) of Ntroduce an extra input air flow to compensate losses. We

(36)-(37). If e denotes the erroe(z,t) = p(z,t) — plz,t), @ then write at: = 0 the ideal boundary condition:
we define: poc
(@(0,2) = 5(0,1)) = 0. (45)

p(0,1) =
Definition 1. The equilibrium solutiorp(z, ¢) of (36)-(37) 25
is exponentially stable if there exist constants- 0, C' > 0 Similarly, u(L,t) = 0, means that there is no loss at the
such that for everyZ(0) > 0 the following inequality holds: pipe end which can be viewed as a ridig wall (see e.g. [12]).
| E(t) |[< Ce ™ E(0) (39) But, in our case, the piston mechanism leads to the following

mechanical dynamics at= L:
where E(t) is the norm:

p(L,t)+ F =mL (46)

1 L
E(t) = —/ (P} + p3)da. (40) . . .
2 Jo where F' is the force exerted on the piston andits mass
The objective of the control is usually to render expo{see Fig. 3).

nentially stable an equilibrium point or orbit which is Not Ramark 1. Notice thatu(L, ) = S, L. Then from (46) we
naturally stable. We will now examine the case ofapartlculahavep L)+ F = m. (L, ). But from Euler equation,
— o Wt

wind instrument which is called a slide flute. S,



Sp . . ) :
ui(L,t) = —p—’pm(L, t). Therefore, if we introduce the con- c) The control problem: We want the solution
0

0 (a(o,t), B(o,1)) to converge asymptotically towards the

trol functionv(t) = —-==(p(L, t)+ F'), " being the extemnal periodic orbit(a(c, t), 3(, t)) given by (49) and (50), which

p H .
force andp(L,t) the known pressure usually measured afan be written from (28):
the end of the instrument, the boundary conditions can be

interpreted as Cauchy type conditions analogous to (37) _ . i _ Loo,
(boundsz = 0 andz = L have just simply been inverted): a(0,t) = poc cos(2m fo(t c ) =m/2) (51)
p(0,8) =0, pa(L,t) = v(?). B(o,t) = _5 cos(2m fo(t + @) +7/2)
pPocC c
5 fo being the frequency corresponding to the desired note,

related to the set value of the pide by (44).

d) Study of the equilibrium orbit stabilitytn the case
of an equilibrium orbit with frequencyf,, we know that
=1 - L. for an open-closed pipe the modes are odd multipleg,of
related toLy by (44) (see [27], [12], [15]). Therefore, the
solution is purely oscillatory and it is important to elabta
a boundary control to obtain local exponential stability.

In a first step, we can consider that the control input is the ) Elaboration of the stabilizing boundary control:
piston velocityZ, related to the physical contrdl (homo- AS in [10], [13], [11] or [1], [2], [3], we will consider
geneous tal)) by an integrator or “cascaded system” (46)_a Lyapunov function gand|date to elaborate the stabilizing
Therefore, using “backstepping” technics, we can compuf@ntrol law. Let us defing’” be as follows:
the physical control input’ which should be applied to the
system if we knowi, (see for example e.g. [2]). Without loss V=A f01 (a(o,t) — a(o,t))? do

Fig. 3. The slide flute

of generality we can then consider the boundary condition . - 1 (52)
atx = L: +A [ (B(o.t) — B(o,t))* do + §(L — Ly)?
w(L,t) =S i (47) where A is an arbitr_ary ;trictly positive constant.
_ -~ If we denote to simplify:

Using (29), (42) and (45)-(47), the boundary conditions can
be rewritten in thex and 8 variables: &0 = &(0,1), ao = a(0,t), 1 = a(1,t), a = a(l,t)

~ ~ - _ _ - - _ _ (53)

{ &(O,t)—@(o,t):() ) (48) ﬁ():ﬁ(ovt)aﬁ():ﬁ(ovt)aﬁl :B(lvt)vﬂl :B(lvt)
a(l,t)+ B(1,t) =2SL differentiating’ with respect to time and using (43)-(48),

Finally, the control model which is considered is giverwe obtain:
by (43) with the associated boundary conditions (48). The
eqU|I.|br|um orbit we want to stabilize is for example of the ve_ Ly +E(L - Lo+
form: L
A - _ - _
2 (@0 — a0)? = (@ — a1)* + (Br — B1)’ — (5o — o)?)

27 fox + g) cos(27 fot) (49) L -
(@ — @)+ (3 - )

p(x,t) = cos( +A_L
where fy is the frequency of the expected note (see 44)). L
Using Euler equation, we deduce that the corresponding flow

has the following form:

(54)

But from (48) we have:

2 i )
u(z,t) = % sin(@ + g) sin(27 fot).  (50) a(0,t) — B(0,t) =0
0
We have seen in Remark 1 that the boundary conditions af@d from (51) we can also write:
of Cauchy type. But, if we would like to rewrite d’Alembert a(0,t) — B(0,t) =0

equation (25) in(e,t) to work in the fixed domaino, 1] .

for o, the resulting equation would be also hyperbolic buwhich leads to:

with more complicated terms as in [3], and the controllapili 332 (A =32

property has not yet been precisely established for that (Bo = o) (G0 — @)

system. It is nevertheless possible to analyze the stabiliihen the term [(@0 —ag)? - (/3)0 _/30)2} is zero in the
of the natural periodic orbit and to exponentially stalaliz . :

. . . . expression (54) oi/.

it for the slide flute through a suitable Lyapunov function, : : )

analogous to the energy function given by (40). This is the It remains to stud~y theﬁfollowmg term:
object of the following sections. Z= (01— (1) — (a1 —ar)’ (55)



From (48) , (5 1) and (44) we have: pressure signal for a down scale pipe length for a down scale

a(1,t) + B(1,t) = 2SL and
Gy + Bi = %(cos(%rfot — 1) — cos(2n fol + 7)) = 0
0

0.1

0175

0.170-

0.165-

denoting 0160
(S = 641 - O_él (56) 0.155
Z can be rewritten:
Z =45%L% — 451, (57)
which yields finally: IS I
2 2
V:AL2+L(B+ M) with A — 2425
L Fig. 4. Acoustic pressure and pipe length for a down scale
andB =L — Lo — % — 4A£S6
(58)

f) Simulation results: We have applied a simplified
version of the control law (59), neglecting the valuesédof
and Z. Fig. 4 displays the results we obtain when the player
wants to produce a down scale by sliding the piston.

We can see that the length of the pipe tends to the
1 (B A(262 + Z)) successive set points in abaut (the sampling period being

This expression ofl’ as a second order polynomial in
L implies the following boundary control, to make the
expected periodic solution (51) asymptotically stabldeast
locally:

L= Y T (59)  equal t022050 Hz) and the piston velocity is smaller than
20 em/s, which corresponds to realistic player gestures. The
¢From (55), (59) is a second order equatiotLiof the form:  system has been numerically simulated using the software
. . package “Scilab” (see for example [4]) from equations (30),
a(L)L" +b(L,6)L +¢(L,V.6) = 0, a(L) > 0. (60) (31) and (29) which allow to compute the physical values of
Near the equilibrium orbit, the discriminank of (60) is the pressure and the flow. The Scilab funciraysnd (see
close to(8AcS?)2. Therefore A is positive and the solution [4]) allows to appreciate the transient effect of the dynasmi

L corresponding to the suitable root is: of t.he piston. The QifferenF notes sound a Iittlg bit “mét‘alll
which is not surprising since we have considered an ideal
= —b(L,8) + VA 61) boundary condition at the entrance of the pipe. Of course,
! 2a(L) ' quite realistic sounds have been synthesized when we take

into account physical models for the excitation mechanism
and the dynamics of the air jet as in [7]. But, in that case, the
Theorem 2. For every constard > 0, there exists a constant entrance boundary conditions are much more complicated so
v > 0 such that each solution of system (43) with boundarthat the problem of finding a Lyapunov function candidate
conditions (48) in closed loop with the control law (59) isto prove the stability remains still open.

such that:

Let us now state the main theorem of the section.

D. Introducing damping in the flute model

| L(0) — Lo | + | &(,0) — a(.,0) |20.1) + Realigtic pipes are I.ossy, due to friction of the air near the
| B(-70) — 3(.,0) lL2(0)< v ' (62)  wall which induces viscous and thermal effects; a refined
' description of those gives rise to the Lokshin model with
is defined for allt > 0 and satisfies: damping of fractional order in time, see e.g. [28]: forc

| L(t) = Lo | + | a(, 1) —a(.,t) [L20,1) + (63) (0, 1), with r(2) > 0, n(z),e(2) > 0, w(t, z) satisfies:
3(.,t) — B(. 2 . 1
|50 8) = B(1) |2 < € 8t2w+77(z) 83/2w+6(z) 85/2111— —28z(7'2 d,w) =0; (66)
Therefore, there existg > 0 such that if: "
with static boundary conditions in =0 andz = 1.

| Q(O) - LQ| +1a(,0) —a(,0) [r2.0) + (64) The model is non standard, since:
| B(,0) = B(.,0) [z20,1y< 7 « there is no simple energy property, due to fractional
then for all¢ tending to+oo: derivatives in time,
. _ « the coefficients are variable with spaeg:— n(z), and
| L(t) = Lo | + [ &(.,t) —al., 1) [L2) + (65) ¢ £(z): no closed-form solution as in [23].
| B(+1) = B 1) lz2.0) — 0. But still, existence, uniqueness and asymptotic stability
For sake of clarity, the proof is given in Appendix. be proved, using diffusive realization in a somewhat more



involved form as ing 11-D, but based on the same principles.been linearized to perform a modal analysis and a control
The underlying idea is to go from the finite number of d.o.falgorithm. But in that case, the stability question and the
to an infinite (and even continous) number of d.o.f., whilelaboration of an associated Lyapunov function remain open
preserving the fundamental passivity property. It relies o (see also [7] for details). Moreover, we have given hints

o0 1 1 1 to show how some non standard damping models for the
/ pp(§) ——ds=—, with pg(§) o< 5, wave equation can also be recast into the framework of
0 s+¢& y ¢ linear control systems, introducing extra memory variable
for Re(s) > 0, and also: and checking energy balances in order to get a well-posed
o0 s ) 1 model.
/0 va(€) - y: d¢ = s, with v,() o fia The questions of optimal control have not been addressed

so far in the present paper, they mix control systems with
optimization techniques: for short, the dynamical system i
g . >HYE viewed as a constraint, and so-called Lagrange variables
aggregations of low-pass (RC) & high-pass (RL) CircuitSgre gefined so as to respect this family of constraints; the
respectively. _ _ nice result is that, upon minimisation of a cost functional,
The quantities of interest are the classical wave energy i, Lagrange multipliers do follow an adjoint dynamical
1 [t ) ) ) system (which involves the adjoint of the matrix of dynamics
En(t) = 5/0 [(Gew)™(2,8) + (9-w)(2,1)] 7 (2) dz, in the linear case, for example). A very interesting and
original application of these techniques to the design aidwi
instruments is presented in [17].
1 [t Now, it is of utmost importance to emphasize that even
Ey(t) = 5/0 /0 p72(€) 6§, 2,1)° dg e(2) dz, if sounds are usually decomposed into harmonics thanks to
Fourier analysis (even short-time Fourier analysis), ihad
sufficient for realistic descriptions especially in thensant

1 1 [e'e] . .
E.(t) = = y 2 1)2den(2) dz. regimes. It thus proves necessary to go beyond the linear
w(®) 2 /o /o 1/2(8) ¥(€ ) den(z) and time-invariant framework. But the problems of control,

Defining an augmented first-order dynamical system with ahen non-linear, time-dependent and even more infinite-
augmented energ§ = E,,, + E4 + Ey, the methodology of dimensional are really hard to tackle, and not suited for a
§ 11-D can be applied, at least formally, to study the Websterlitorial paper; nevertheless, the interested reader ene
Lokshin equation as a coupled system of the form (15§° €. [9] for up to date mathematical issues, and also to
Once again, this reformulation of (66) as a first order systeft?9], [34] for very interesting and promising developments
in both the wave variable§).w, d,w) and the continuous of nonlinear tools in the field of simulation and control of
collection of memory (or diffusive) variablés (¢, .), (¢,.)) ~ musical instruments.

proves useful for analysis and numerical simulations (es- V. ACKNOWLEDGEMENTS

pecially the design of ad hoc numerical schemes which h h indebted dfor hi
preserve the energy balance at a discrete level). But, since! '€ authors are indebted to J. Kergomard for his numerous

the mathematical tools involved are very technical, it ha@dvices. that helped greatly improve the original versién o
been chosen not to present them in this overview paper. THYS research report.

Hence, fractional integrals of ordér< 5 < 1 and fractional
derivatives of order) < « < 1 are continuous positive

and the diffusive energies for fractional integrals

and for fractional derivatives

interested reader is referred to [22], [21], [25], [26]. APPENDIX
IV. CONCLUSION AND PERSPECTIVES To prove the local exponential stability result of Theorem
In this paper, we have shown both the interests of realiz& We first notice that from (58) and (59) can be rewritten:
tion theory and automatic control when applied to mode]ling A(26% + 2) 2
simulation and control of musical instruments, at least for ) <B T)
simplified ones. V= v <0. (67)

In the finite dimensional case, we have presented a firsjv ¢ ion is clearlv d . lud
example in discrete time of a lossless pipe, such as the vocgf€ Lyapunov function is clearly decreasing. To conclude,

tract or a flared acoustic pipe; we have studied a secorff have to study _the convergence of '_[he solu_tlons. F_or

example of a mechanical oscillator damped by memor}aat_pqrposej we will use a LaSalle invariance principle, in

mechanism, which is being used in viscoelasticity. e n_1f|n|te dl.me'nsu.)n case. Lgt us then_ study the invariant
In the infinite dimensional case, we have proved expg:2lutions satisfying” = 0, which is equivalent from (67)

nential stability of a slide flute using a suitable boundar@"d (59) t0 the conditiod = 0. In that case}” and L are

control for ideal boundary conditions of Cauchy type. FoconStant.Z is zero and from (60)¢(L, V,d) = 0, which

more realistic models of the mouth taking into account th&NPlies thatd given by (56) is itself constant.

coupling effects between the acoustic field of the resonator MOreover, if L = 0, using (43).a(o, t) est de la forme:

and the air jet (see e.g. [14], [5], [7]), the resulting boand Lo

conditions at the mouth are more complicated and have a(o,t) = o(t — 7)- (68)



Then using (51), we can write: [6]
o(t) =6+ Ll sin(27 fo (¢ + ﬂ)). (69) [
poC c
Similarly, using (43),3(c, t) is of the form: 8]
~ Lo
Blo,t) =9t +—). (70) 9]
From the boundary condition at = 0 in (48), we deduce: [10]
S . L—Lg

Using now the boundary condition at = 1 in (48) with

(71) and the relatiord. = 0, we obtain: [12]
L L
ot — ;) = —p(t + ;)~ (72)

i}
Replacingy by its expression (69), we deduce from (72) and
(44) the relation:

[14]
S et S et
— sin(— —7/2) = —§ — — sin(— 2). (7
5+poc bln(2L0 T/2) ) oc sm(QLO—i-ﬂ'/ )- (73)  [15]
This leads locally forLL close toL, to the solution: [16]

L =Loand§ =0. (74) 07
Therefore,

e, using (74), the expression (51) of!8l

(a(o, t),_ﬁ(a, t)) as well as (68), (70) and (71), the(q

expression ofl” given by (52) becomes:

V =245 [20]

which implies from (74) thal” is also zero. So, the appli-
cation of LaSalle invariance principle leads to:

{ |

which implies due to (52), that the solutida (o, t), 3(o,t))
asymptotically converges to the equilibrium orbit

(a(o,t),B(o,t)) given by (51).

From a mathematical point of view, it then suffices to
check the pre-compactness of the solutions to conclude as[a]
the finite dimensional case. To do that, we can procced like
in [3, Sec. 4].{

(75)

[21]

L =L

5=V =0 (76)

(22]

(23]
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