1,844 research outputs found

    Efficient Inhibition of Collagen-Induced Platelet Activation and Adhesion by LAIR-2, a Soluble Ig-Like Receptor Family Member

    Get PDF
    LAIR-1 (Leukocyte Associated Ig-like Receptor -1) is a collagen receptor that functions as an inhibitory receptor on immune cells. It has a soluble family member, LAIR-2, that also binds collagen and can interfere with LAIR-1/collagen interactions. Collagen is a main initiator for platelet adhesion and aggregation. Here, we explored the potential of soluble LAIR proteins to inhibit thrombus formation in vitro. LAIR-2/Fc but not LAIR-1/Fc inhibited collagen-induced platelet aggregation. In addition, LAIR-2/Fc also interfered with platelet adhesion to collagen at low shear rate (300 s−1; IC50 = 18 µg/ml) and high shear rate (1500 s−1; IC50 = 30 µg/ml). Additional experiments revealed that LAIR-2/Fc leaves interactions between collagen and α2β1 unaffected, but efficiently prevents binding of collagen to Glycoprotein VI and von Willebrand factor. Thus, LAIR-2/Fc has the capacity to interfere with platelet-collagen interactions mediated by Glycoprotein VI and the VWF/Glycoprotein Ib axis

    Correction of bleeding in experimental severe hemophilia A by systemic delivery of factor VIII-encoding mRNA

    Get PDF
    The treatment or prevention of bleeding in patients with hemophilia A relies on replacement therapy with different factor VIII (FVIII)-containing products or on the use of by-passing agents, i.e., activated prothrombin complex concentrates or recombinant activated factor VII. Emerging approaches include the use of bispecific anti-factor IXa/factor X antibodies, anti-tissue factor pathway inhibitor antibodies, interfering RNA to antithrombin, and activated protein C-specific serpins or gene therapy. The latter strategies are, however, hampered by the short clinical experience and potential adverse effects including the absence of tight temporal and spatial control of coagulation and the risk of uncontrolled insertional mutagenesis. Systemic delivery of mRNA allows endogenous production of the corresponding encoded protein. Thus, injection of erythropoietin-encoding mRNA in a lipid nanoparticle formulation resulted in increased erythropoiesis in mice and macaques. Here, we demonstrate that a single injection of in vitro transcribed B domain-deleted FVIII-encoding mRNA to FVIII-deficient mice enables endogenous production of pro-coagulant FVIII. Circulating FVIII:C levels above 5% of normal levels were maintained for up to 72 h, with an estimated half-life of FVIII production of 17.9 h, and corrected the bleeding phenotype in a tail clipping assay. The endogenously produced FVIII did however exhibit low specific activity and induced a potent neutralizing IgG response upon repeated administration of the mRNA. Our results suggest that the administration of mRNA is a plausible strategy for the endogenous production of proteins characterized by poor translational efficacy. The use of alternative mRNA delivery systems and improved FVIII-encoding mRNA should foster the production of functional molecules and reduce their immunogenicity

    Gain-of-Function Variant pPro2555Arg of von Willebrand Factor Increases Aggregate Size through Altering Stem Dynamics

    Get PDF
    The multimeric plasma glycoprotein (GP) von Willebrand factor (VWF) is best known for recruiting platelets to sites of injury during primary hemostasis. Generally, mutations in the VWF gene lead to loss of hemostatic activity and thus the bleeding disorder von Willebrand disease. By employing cone and platelet aggregometry and microfluidic assays, we uncovered a platelet GPIIb/IIIa-dependent prothrombotic gain of function (GOF) for variant p.Pro2555Arg, located in the C4 domain, leading to an increase in platelet aggregate size. We performed complementary biophysical and structural investigations using circular dichroism spectra, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy, molecular dynamics simulations on the single C4 domain, and dimeric wild-type and p.Pro2555Arg constructs. C4-p.Pro2555Arg retained the overall structural conformation with minor populations of alternative conformations exhibiting increased hinge flexibility and slow conformational exchange. The dimeric protein becomes disordered and more flexible. Our data suggest that the GOF does not affect the binding affinity of the C4 domain for GPIIb/IIIa. Instead, the increased VWF dimer flexibility enhances temporal accessibility of platelet-binding sites. Using an interdisciplinary approach, we revealed that p.Pro2555Arg is the first VWF variant, which increases platelet aggregate size and shows a shear-dependent function of the VWF stem region, which can become hyperactive through mutations. Prothrombotic GOF variants of VWF are a novel concept of a VWF-associated pathomechanism of thromboembolic events, which is of general interest to vascular health but not yet considered in diagnostics. Thus, awareness should be raised for the risk they pose. Furthermore, our data implicate the C4 domain as a novel antithrombotic drug target

    Models for Prediction of Factor VIII Half-Life in Severe Haemophiliacs: Distinct Approaches for Blood Group O and Non-O Patients

    Get PDF
    BACKGROUND: Von Willebrand factor (VWF) is critical for the in vivo survival of factor VIII (FVIII). Since FVIII half-life correlates with VWF-antigen pre-infusion levels, we hypothesized that VWF levels are useful to predict FVIII half-life. METHODOLOGY: Standardized half-life studies and analysis of pre-infusion VWF and VWF-propeptide levels were performed in a cohort of 38 patients with severe haemophilia A (FVIII <1 IU/ml), aged 15-44 years. Nineteen patients had blood-group O. Using multivariate linear regression-analysis (MVLR-analysis), the association of VWF-antigen, VWF-propeptide, age and body-weight with FVIII half-life was evaluated. PRINCIPAL FINDINGS: FVIII half-life was shorter in blood-group O-patients compared to non-O-patients (11.5+/-2.6 h versus 14.3+/-3.0 h; p = 0.004). VWF-antigen levels correlated with FVIII half-life considerably better in patients with blood-group non-O than O (Pearson-rank = 0.70 and 0.47, respectively). Separate prediction models evolved from MVLR-analysis for blood-group O and non-O patients, based on VWF-antigen and VWF/propeptide ratio. Predicted half-lives deviated less than 3 h of observed half-life in 34/38 patients (89%) or less than 20% in 31/38 patients (82%). CONCLUSION: Our approach may identify patients with shorter FVIII half-lives, and adapt treatment protocols when half-life studies are unavailable. In addition, our data indicate that survival of FVIII is determined by survival of endogenous VWF rather than VWF levels per se

    Open versus laparoscopically-assisted oesophagectomy for cancer: a multicentre randomised controlled phase III trial - the MIRO trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Open transthoracic oesophagectomy is the standard treatment for infracarinal resectable oesophageal carcinomas, although it is associated with high mortality and morbidity rates of 2 to 10% and 30 to 50%, respectively, for both the abdominal and thoracic approaches. The worldwide popularity of laparoscopic techniques is based on promising results, including lower postoperative morbidity rates, which are related to the reduced postoperative trauma. We hypothesise that the laparoscopic abdominal approach (laparoscopic gastric mobilisation) in oesophageal cancer surgery will decrease the major postoperative complication rate due to the reduced surgical trauma.</p> <p>Methods/Design</p> <p>The MIRO trial is an open, controlled, prospective, randomised multicentre phase III trial. Patients in study arm A will receive laparoscopic-assisted oesophagectomy, i.e., a transthoracic oesophagectomy with two-field lymphadenectomy and laparoscopic gastric mobilisation. Patients in study arm B will receive the same procedure, but with the conventional open abdominal approach. The primary objective of the study is to evaluate the major postoperative 30-day morbidity. Secondary objectives are to assess the overall 30-day morbidity, 30-day mortality, 30-day pulmonary morbidity, disease-free survival, overall survival as well as quality of life and to perform medico-economic analysis. A total of 200 patients will be enrolled, and two safety analyses will be performed using 25 and 50 patients included in arm A.</p> <p>Discussion</p> <p>Postoperative morbidity remains high after oesophageal cancer surgery, especially due to major pulmonary complications, which are responsible for 50% of the postoperative deaths. This study represents the first randomised controlled phase III trial to evaluate the benefits of the minimally invasive approach with respect to the postoperative course and oncological outcomes in oesophageal cancer surgery.</p> <p>Trial Registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT00937456">NCT00937456</a> (ClinicalTrials.gov)</p

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Epilepsy in Dcx Knockout Mice Associated with Discrete Lamination Defects and Enhanced Excitability in the Hippocampus

    Get PDF
    Patients with Doublecortin (DCX) mutations have severe cortical malformations associated with mental retardation and epilepsy. Dcx knockout (KO) mice show no major isocortical abnormalities, but have discrete hippocampal defects. We questioned the functional consequences of these defects and report here that Dcx KO mice are hyperactive and exhibit spontaneous convulsive seizures. Changes in neuropeptide Y and calbindin expression, consistent with seizure occurrence, were detected in a large proportion of KO animals, and convulsants, including kainate and pentylenetetrazole, also induced seizures more readily in KO mice. We show that the dysplastic CA3 region in KO hippocampal slices generates sharp wave-like activities and possesses a lower threshold for epileptiform events. Video-EEG monitoring also demonstrated that spontaneous seizures were initiated in the hippocampus. Similarly, seizures in human patients mutated for DCX can show a primary involvement of the temporal lobe. In conclusion, seizures in Dcx KO mice are likely to be due to abnormal synaptic transmission involving heterotopic cells in the hippocampus and these mice may therefore provide a useful model to further study how lamination defects underlie the genesis of epileptiform activities
    corecore