26,840 research outputs found

    Evidence for the Collective Nature of the Reentrant Integer Quantum Hall States of the Second Landau Level

    Get PDF
    We report an unexpected sharp peak in the temperature dependence of the magnetoresistance of the reentrant integer quantum Hall states in the second Landau level. This peak defines the onset temperature of these states. We find that in different spin branches the onset temperatures of the reentrant states scale with the Coulomb energy. This scaling provides direct evidence that Coulomb interactions play an important role in the formation of these reentrant states evincing their collective nature

    Cardiac-specific Conditional Knockout of the 18-kDa Mitochondrial Translocator Protein Protects from Pressure Overload Induced Heart Failure.

    Get PDF
    Heart failure (HF) is characterized by abnormal mitochondrial calcium (Ca2+) handling, energy failure and impaired mitophagy resulting in contractile dysfunction and myocyte death. We have previously shown that the 18-kDa mitochondrial translocator protein of the outer mitochondrial membrane (TSPO) can modulate mitochondrial Ca2+ uptake. Experiments were designed to test the role of the TSPO in a murine pressure-overload model of HF induced by transverse aortic constriction (TAC). Conditional, cardiac-specific TSPO knockout (KO) mice were generated using the Cre-loxP system. TSPO-KO and wild-type (WT) mice underwent TAC for 8 weeks. TAC-induced HF significantly increased TSPO expression in WT mice, associated with a marked reduction in systolic function, mitochondrial Ca2+ uptake, complex I activity and energetics. In contrast, TSPO-KO mice undergoing TAC had preserved ejection fraction, and exhibited fewer clinical signs of HF and fibrosis. Mitochondrial Ca2+ uptake and energetics were restored in TSPO KO mice, associated with decreased ROS, improved complex I activity and preserved mitophagy. Thus, HF increases TSPO expression, while preventing this increase limits the progression of HF, preserves ATP production and decreases oxidative stress, thereby preventing metabolic failure. These findings suggest that pharmacological interventions directed at TSPO may provide novel therapeutics to prevent or treat HF

    Growth rate analysis of scalar gradients in generalized surface quasigeostrophic equations of ideal fluids

    Get PDF
    The growth rates of scalar gradients are studied numerically and analytically in a family of two-dimensional (2D) incompressible fluid equations related to the surface quasigeostrophic (SQG) equation. The active scalar is related to the stream function ψ by θ=(−△)α/2ψ (0⩽α⩽2). A notable difference is observed in a comparison of the instantaneous growth rates in Lp and in L∞ norms, depending on the stage of the time evolution. The crux is the phase-shift effect of singular integral operators, which displaces the peak location of the scalar gradient from that of the strain rate. On this basis, a method of detecting such a dislocation is proposed in view of the importance of their coalescence needed for a possible blow-up. Moreover, it is found in the long-time evolution that a solution of the SQG equation (whose regularity is not known) is less singular than that of the 2D Euler equations (known to be regular) on the time interval covered by this computation. This consistently expands an earlier observation by Majda and Tabak [Physica D 98, 515 (1996).] in some detail. A 1D model problem is discussed to illustrate the present method, and extensions to the 3D case are also are briefly discussed

    Electronic Structure and Lattice dynamics of NaFeAs

    Full text link
    The similarity of the electronic structures of NaFeAs and other Fe pnictides has been demonstrated on the basis of first-principle calculations. The global double-degeneracy of electronic bands along X-M and R-A direction indicates the instability of Fe pnictides and is explained on the basis of a tight-binding model. The de Haas-van Alphen parameters for the Fermi surface (FS) of NaFeAs have been calculated. A QM=(1/2,1/2,0)\mathbf{Q}_{M}=(1/2,1/2,0) spin density wave (SDW) instead of a charge density wave (CDW) ground state is predicted based on the calculated generalized susceptibility χ(q)\chi(\mathbf{q}) and a criterion derived from a restricted Hatree-Fock model. The strongest electron-phonon (e-p) coupling has been found to involve only As, Na z-direction vibration with linear-response calculations. A possible enhancement mechanism for e-p coupling due to correlation is suggested

    Extended crossover from Fermi liquid to quasi-antiferromagnet in the half-filled 2D Hubbard model

    Get PDF
    The ground state of the Hubbard model with nearest-neighbor hopping on the square lattice at half filling is known to be that of an antiferromagnetic (AFM) band insulator for any on-site repulsion. At finite temperature, the absence of long-range order makes the question of how the interaction-driven insulator is realized nontrivial. We address this problem with controlled accuracy in the thermodynamic limit using self-energy diagrammatic determinant Monte Carlo and dynamical cluster approximation methods and show that development of long-range AFM correlations drives an extended crossover from Fermi liquid to insulating behavior in the parameter regime that precludes a metal-to-insulator transition. The intermediate crossover state is best described as a non-Fermi liquid with a partially gapped Fermi surface.Comment: 6 pages, 4 figures, with supplemental material: 2 pages, 3 figure

    Crossing bonds in the random-cluster model

    Full text link
    We derive the scaling dimension associated with crossing bonds in the random-cluster representation of the two-dimensional Potts model, by means of a mapping on the Coulomb gas. The scaling field associated with crossing bonds appears to be irrelevant, on the critical as well as on the tricritical branch. The latter result stands in a remarkable contrast with the existing result for the tricritical O(n) model that crossing bonds are relevant. In order to obtain independent confirmation of the Coulomb gas result for the crossing-bond exponent, we perform a finite-size-scaling analysis based on numerical transfer-matrix calculations.Comment: 2 figure

    Nanosecond electric pulses penetrate the nucleus and enhance speckle formation

    No full text
    Nanosecond electric pulses generate nanopores in the interior membranes of cells and modulate cellular functions. Here, we used confocal microscopy and flow cytometry to observe Smith antigen antibody (Y12) binding to nuclear speckles, known as small nuclear ribonucleoprotein particles (snRNPs) or intrachromatin granule clusters (IGCs), in Jurkat cells following one or five 10 ns, 150 kV/cm pulses. Using confocal microscopy and flow cytometry, we observed changes in nuclear speckle labeling that suggested a disruption of pre-messenger RNA splicing mechanisms. Pulse exposure increased the nuclear speckled substructures by 2.5-fold above basal levels while the propidium iodide (PI) uptake in pulsed cells was unchanged. The resulting nuclear speckle changes were also cell cycle dependent. These findings suggest that 10 ns pulses directly influenced nuclear processes, such as the changes in the nuclear RNA–protein complexes

    Seismic Stability Analysis of a High Earth and Rockfill Dam

    Get PDF
    Accumulation of knowledge on earthquake activity in California has lead to stronger ground motions being postulated for the evaluation of the seismic stability of dams. A recent regional seismicity study for a 555 ft high earth and rockfill dam in central California lead to a ground motion with peak ground acceleration (PGA) of 0.50g originating in a local fault system 3 miles from the dam site. This PGA is more than 6 times higher than the PGA=0.08g value originally adopted when the Dam was analyzed for seismic stability 20 years ago. Thus, as part of FERC Part 12 evaluation requirements, the seismic stability of the Dam was re-evaluated using the updated ground motion and state-of-the-practice technology. This paper presents the analysis procedures and the results

    On the Light Curve and Spectrum of SN 2003dh Separated from the Optical Afterglow of GRB 030329

    Full text link
    The net optical light curves and spectra of the supernova (SN) 2003dh are obtained from the published spectra of GRB 030329, covering about 6 days before SN maximum to about 60 days after. The bulk of the U-band flux is subtracted from the observed spectra using early-time afterglow templates, because strong line blanketing greatly depresses the UV and U-band SN flux in a metal-rich, fast-moving SN atmosphere. The blue-end spectra of the gamma-ray burst (GRB)connected hypernova SN 1998bw is used to determine the amount of subtraction. The subtraction of a host galaxy template affects the late-time results. The derived SN 2003dh light curves are narrower than those of SN 1998bw, rising as fast before maximum, reaching a possibly fainter maximum, and then declining ~ 1.2-1.4 times faster. We then build UVOIR bolometric SN light curve. Allowing for uncertainties, it can be reproduced with a spherical ejecta model of Mej ~ 7+/-3 Msun, KE ~ (3.5+/-1.5)E52 ergs, with KE/Mej ~ 5 following previous spectrum modelling, and M(Ni56) ~ (0.4 +0.15/-0.1) Msun. This suggests a progenitor main-sequence mass of about 25-40 Msun, lower than SN 1998bw but significantly higher than normal Type Ic SNe and the GRB-unrelated hypernova SN 2002ap.Comment: 18 pages, 7 figures, published by Ap

    SN 2006aj Associated with XRF 060218 At Late Phases: Nucleosynthesis-Signature of A Neutron Star-Driven Explosion

    Get PDF
    Optical spectroscopy and photometry of SN 2006aj have been performed with the Subaru telescope at t > 200 days after GRB060218, the X-ray Flash with which it was associated. Strong nebular emission-lines with an expansion velocity of v ~ 7,300 km/s were detected. The peaked but relatively broad [OI]6300,6363 suggests the existence of ~ 2 Msun of materials in which ~1.3 Msun is oxygen. The core might be produced by a mildly asymmetric explosion. The spectra are unique among SNe Ic in (1) the absence of [CaII]7291,7324 emission, and (2) a strong emission feature at ~ 7400A, which requires ~ 0.05 Msun of newly-synthesized 58Ni. Such a large amount of stable neutron-rich Ni strongly indicates the formation of a neutron star. The progenitor and the explosion energy are constrained to 18 Msun < Mms < 22 Msun and E ~ (1 - 3) 10^{51} erg, respectively.Comment: Accepted for Publication in the Astrophysical Journal Letters (2007, ApJ, 658, L5). 8 pages, including 1 table and 3 figures. Typos correcte
    • …
    corecore