The similarity of the electronic structures of NaFeAs and other Fe pnictides
has been demonstrated on the basis of first-principle calculations. The global
double-degeneracy of electronic bands along X-M and R-A direction indicates the
instability of Fe pnictides and is explained on the basis of a tight-binding
model. The de Haas-van Alphen parameters for the Fermi surface (FS) of NaFeAs
have been calculated. A QM=(1/2,1/2,0) spin density wave (SDW)
instead of a charge density wave (CDW) ground state is predicted based on the
calculated generalized susceptibility χ(q) and a criterion
derived from a restricted Hatree-Fock model. The strongest electron-phonon
(e-p) coupling has been found to involve only As, Na z-direction vibration with
linear-response calculations. A possible enhancement mechanism for e-p coupling
due to correlation is suggested