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Collective Nature of the Reentrant Integer Quantum Hall States in the Second Landau Level
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We report an unexpected sharp peak in the temperature dependence of the magnetoresistance of the

reentrant integer quantum Hall states in the second Landau level. This peak defines the onset temperature

of these states. We find that in different spin branches the onset temperatures of the reentrant states scale

with the Coulomb energy. This scaling provides direct evidence that Coulomb interactions play an

important role in the formation of these reentrant states evincing their collective nature.

DOI: 10.1103/PhysRevLett.108.086803 PACS numbers: 73.43.�f, 73.20.Qt, 73.21.Fg

The density of states of a two-dimensional electron gas
(2DEG) in a perpendicular magnetic field B consists of a
set of discrete energy levels called the Landau levels. Since
spin degeneracy is lifted, each orbital Landau level splits
into two distinct energy levels. The second orbital Landau
level (SLL) thus corresponds to Landau level filling factor
� in the 2< �< 4 range.

The SLL is astonishingly rich in novel ground states
[1–3]. Recent experiments [3–9] suggest that in this region
there are both fractional quantum Hall states (FQHS) of
free composite fermions [10,11] as well as exotic FQHSs
[12–15]. The study of the latter has enriched quantum
many-body physics with numerous novel concepts such
as paired composite fermion states with Pfaffian correla-
tions, non-Abelian quasiparticles [12–21], and topologi-
cally protected quantum computing [22].

The eight reentrant integer quantum Hall states
(RIQHSs) form another set of prominent ground states in
the SLL [1]. The transport signatures of the RIQHSs are
consistent with electron localization in the topmost energy
level [1]. However, the nature of the localization is not yet
well understood. Depending on the relative importance of
the electron-electron interactions, the ground state can be
either an Anderson insulator or a collectively pinned elec-
tron solid.

FQHSs owe their existence to the presence of the inter-
electronic Coulomb interactions [10,11]. Since FQHSs and
RIQHSs alternate in the SLL, it was argued that Coulomb
interactions must be important and, therefore, the RIQHSs
in the SLL must be electron solids [1]. Subsequent density
matrix renormalization group [23] and Hartree-Fock cal-
culations [24] also favored the electron solid picture and
predicted the solid phase similar to the Wigner crystal, but
having one or more electrons in the nodes of the crystal
[24]. Recently reported weak microwave resonances in one
such RIQHS are suggestive of but are far from being
conclusive on the formation of a collective insulator [25].
Our understanding of the RIQHSs in the SLL, therefore, is

still in its infancy and the collective nature of these states
has not yet been firmly established.
In this Letter we report a feature in the temperature

dependent magnetoresistance which so far has only been
observed in the RIQHSs in the SLL. We use this feature to
define the onset temperature of the RIQHSs. The scaling of
the onset temperatures with the Coulomb energy reveals
that Coulomb interactions play a central role in the for-
mation of RIQHSs and, therefore, these reentrant states are
exotic electronic solids rather than Anderson insulators.
We also report an unexpected trend of the onset tempera-
tures within each spin branch. This trend is inconsistent
with current theories and can be understood as a result of a
broken electron-hole symmetry. Explaining such a broken
symmetry of the RIQHSs is expected to impact our under-
standing of a similar asymmetry of the exotic FQHSs of the
SLL, including the one at � ¼ 5=2.
We performed magnetotransport measurements on a

high quality GaAs=AlGaAs sample of density n ¼
3:0� 1011 cm�2 and of mobility �¼3:2�107 cm2=Vs.
Earlier we reported the observation of a new FQHS at � ¼
2þ 6=13 in this sample [3]. The sample is immersed into a
He-3 cell equipped with a quartz tuning fork viscometer
used for B-field independent thermometry [26].
In Fig. 1(a) we show the dependence of the Hall resist-

ance Rxy in the SLL on B (bottom scale) and on the Landau

level filling factor � ¼ hn=eB (top scale). Here h is
Planck’s constant and e the electron charge. For 2<�<3
only the lower of the two spin-split energy levels of the
SLL is occupied, hence the term lower spin branch.
3< �< 4 corresponds to the occupation of the upper
spin branch. Shown in Fig. 1(a) there are several regions
of � for which Rxy has plateaus quantized to an integer, i.e.,

Rxy ¼ h=ie2 with i ¼ 2, 3, and 4. The three wide plateaus

at � < 2:17, 2:83< �< 3:17, and � > 3:83 are quantized
to h=2e2, h=3e2, and h=4e2, respectively, and contain the
filling factors � ¼ 2, 3, and 4 marked by arrows. These are
the well known integer quantum Hall plateaus. In contrast,
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other eight plateaus, shaded in Fig. 1(a), are quantized to an
integer but form at a filling factor range which does not
contain an integer �. For example, the region labeled
R2a exhibits Rxy ¼ h=2e2 and it stretches between

2:26< �< 2:32, a region which does not contain � ¼ 2.
These eight states are the RIQHSs [1] and we label the ones
located between 2< �< 3 with R2a, R2b, R2c, and R2d
and the ones between 3< �< 4 with R3a, R3b, R3c, and
R3d. RIQHSs have historically been predicted [27] and
observed [28,29] in high Landau levels (i.e., � > 4), but in
contrast to the SLL, in high Landau levels there are only
four RIQHSs in each Landau level.

Because of the delicate nature of the RIQHS in the SLL
[1–6,30–35] there is only scarce information available on
their temperature dependence [30,31,34]. In Figs. 1(b) and
1(c) we show the detailed temperature evolution of the
longitudinal resistance Rxx and Rxy of R2b, respectively.

The RxxðBÞjT¼6:9 mK curve has a wide zero flanked by two
sharp spikes. As the temperature is raised, the spikes in Rxx

persist but they move closer to each other and the width of
the zero decreases. At 32.6 mK RxxðBÞ does still exhibit the
two spikes but instead of a zero it has a nonzero local
minimum. The location in B field of this minimum is
T independent and it defines the center �c ¼ 2:438 of the
R2b state. At 35.7 mK the two spikes of RxxðBÞ have
moved closer to each other and between them there is still
a local minimum, albeit with a large resistance. A small
increase in T of only 2 mK leads to a qualitative change.
Indeed, in contrast to curves at lower T, RxxðBÞjT¼37:7 mK

exhibits a single peak only. As the temperature is further

raised, this single peak rapidly decreases until it merges
into a low resistance background. Simultaneously with the
described changes of Rxx, Rxy evolves from the quantized

value h=2e2 to its classical value B=ne ¼ h=�ce
2.

The behavior seen in Fig. 1 can be better understood by
measuring T dependence at a fixed �. In Fig. 2 we show Rxy

versus T near the center �c of the various RQIHSs. It is
found that Rxy assumes the classical Hall resistance at high

T and it is quantized to h=2e2 or h=3e2 at low T. Since 80%
of the change in Rxy between these two values occurs over

only 5 mK, this change is very abrupt and it clearly
separates the RIQHS at low T from the classical gas at
high T. We interpret the inflection point in Rxy versus T as

being the onset temperature Tc of the RIQHS. For reliable
measurements in the vicinity of Tc the temperature is swept
slower than 10 mK=h.
A transition from the classical Hall value to a quantized

Rxy with decreasing T is observed not only for the RIQHSs

in the SLL but also in the vicinity of any developed integer
or fractional quantum Hall state and it is due to localization
in the presence of a B field. As seen in Fig. 2, the
RxxðTÞj�¼fixed curves for the RIQHSs are nonzero at high
T, they vanish at low T, and they exhibit a sharp peak at
the onset temperature Tc defined above. In contrast,
RxxðTÞj�¼fixed of a quantum Hall state changes monotoni-
cally, without the presence of a peak.We found no reports in
the literature of a similar peak in any other ground state of
the 2DEG. The sharp peak in RxxðTÞj�¼fixed is, therefore, a
signature of localization so far only observed in theRIQHSs
of the SLL and the peak temperature can be used as an
alternative definition for the onset temperature Tc.
Figure 3 represents the stability diagram of the RIQHSs

in the ��-T plane. Here �� ¼ �� 2ð3Þ is the partial filling
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FIG. 1 (color online). The Hall resistance of the eight RIQHSs
in the SLL at 6.9 mK [panel (a)] and the temperature evolution of
the RIQHS labeled R2b (bottom panels).
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factor of the lower (upper) spin level. As described earlier,
at a given � the RIQHSs develop below the temperature of
the peak in the RxxðTÞj��¼fixed curve. Such peaks are shown
in Fig. 2 for �� � ��

c, but similar peaks are also present for
nearby filling factors (not shown). Open symbols in Fig. 3
are the temperatures of the peak as plotted against ��.
Similarly, the RIQHSs develop between the spikes of the
Rxxð�ÞjT¼fixed curves, such as the ones shown in Fig. 1(b).
The filling factors �� of the spikes for each RIQHS mea-
sured at a given temperature are marked with closed sym-
bols in Fig. 3. The excellent overlap of the two data sets in
Fig. 3 shows that the two definitions used above self-
consistently define the stability boundary of each RIQHS.
The shaded areas within each boundary of Fig. 3 represent
the RIQHSs. FQHSs can develop only outside these shaded
areas. The locations ��

high and ��
low of the spikes of the

Rxxð�ÞjT¼fixed curve measured at the lowest T ¼ 6:9 mK of
our experiment are listed in Table I.

We note that the R2a state is different from the rest of
the RIQHSs as it splits into two RIQHSs with a decreasing
temperature. Such a split is signaled by an Rxy deviating

from h=2e2 as well as a nonzero Rxx in the vicinity of
� ¼ 2þ 2=7 and it has already been reported in Ref. [2].
The split-off RIQHS is marked as R2~a and with a darker

shade in Fig. 3. We note that our data are similar to that in
Refs. [1] in that the Ria, i ¼ 2, 3 is the most stable state.
Other studies find the R2c state to be the most stable of
RIQHSs [4–6,25,30–35].
Each stability boundary shown in Fig. 3 can be fitted

close to their maxima with a parabolic form Tcð��Þ ¼
Tcð��

cÞ � �ð�� � ��
cÞ2. The obtained parameters are listed

in Table I. Tc obtained from the fit is within 1 mK from the
peak temperature obtained fromFig. 2. The centers��

c of the
RIQHSs in the upper spin branch are in excellent agreement
with the earlier reported values [1]. Those of the upper spin
branch, however, have not yet been documented and they
differ significantly from those of the lower spin branch.
Indeed, ��

c;R2� � ��
c;R3� for� ¼ a, b, c, or d, the difference

being the largest for the states a and d. Such a difference is
not expected from the theory [23,24] and we think it is due
to the interaction of the electrons in the topmost Landau
level with those in the filled lower levels. Furthermore, we
establish that the centers ��

c of RIQHSs in both spin
branches obey particle-hole symmetry, as assumed by the
theory [23,24]. In short ��

c;Ria ¼ 1� ��
c;Rid and ��

c;Rib ¼
1� ��

c;Ric for i ¼ 2, 3, relations which hold within our

measurement error for the filling factor of�0:003.
In contrast to the centers of RIQHSs, other parameters of

RIQHSs from Table I do not obey particle-hole symmetry.
These parameters are the maximum onset temperatures
Tcð��

cÞ, the fit parameter � describing the curvature of
the stability diagrams near Tcð��

cÞ, and the widths �� ¼
��
high � ��

low of the stability regions of the RIQHSs at

T ¼ 6:9 mK. Indeed, particle-hole symmetry within a
spin branch would imply a scaling of Tc with the
Coulomb energy EC and, therefore, a monotonically de-
creasing Tcð��

cÞ with an increasing ��
c. Here EC ¼ e2=�lB

and lB ¼ ffiffiffiffiffiffiffiffiffiffiffi
@=eB

p
is the magnetic length. Data from

Table. I, however, clearly show that contrary to this expec-
tation Tcð��

c ¼ 0:568Þ> Tcð��
c ¼ 0:438Þ [31]. We thus

find that the particle-hole symmetry within one spin branch
assumed in current theories [23,24] is violated. The non-
monotonic dependence of Tc on �

�
c is, furthermore, at odds

with the sequence of the one- and two-electron bubbles
suggested [23,24]. These findings are puzzling and they
show that there is still much left to be understood about the
RIQHSs. Possible causes include Landau level mixing,
disorder, or finite thickness effects. The origin of the
broken symmetry described above is most likely related
to and, therefore, it will influence the understanding of a
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FIG. 3 (color online). The phase boundaries of the eight
RIQHS in the SLL in the ��-T plane. The RIQHSs are stable
within the shaded areas. Below 33 mK the R2a state has a split-
off state labeled R2~a.

TABLE I. Parameters extracted from the ��-T diagram. Tc and � are in units of mK.

R2a R2b R2c R2d R3a R3b R3c R3d

��
c 0.300 0.438 0.568 0.701 0.284 0.429 0.576 0.712

Tcð��
cÞ 53.0 37.1 45.8 38.0 46.3 32.3 36.1 33.8

�� 10�4 10 3.9 2.4 8.5 2.1 2.0 1.6 2.3

��
high 0.317 0.461 0.613 0.719 0.324 0.463 0.621 0.742

��
low 0.258 0.407 0.523 0.684 0.245 0.388 0.540 0.677
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similar symmetry breaking of the Pfaffian and anti-Pfaffian
construction for the � ¼ 5=2 FQHS [36–43].

The onset temperatures Tcð��
cÞ in the higher spin branch

are consistently smaller than those in the lower spin
branch. We notice, however, a startlingly similar depen-
dence within each spin branch. A particularly revealing
plot is that of the reduced onset temperatures Tcð��

cÞ=EC

against the filling factor ��
c. As shown in Fig. 4(a), there is a

surprisingly good collapse of Tcð��
cÞ=EC for the different

spin branches. This collapse shows that Coulomb interac-
tions play a central role in the formation of the RIQHSs in
the SLL and provides direct evidence that these states
reflect collective behavior of the electrons rather than
single particle localization. The lack of collapse of
Tcð��

cÞ=@!C (not shown) means that Tcð��
cÞ does not scale

with the cyclotron energy @!C.
In a recent study an activated dependence of RxxðTÞ is

found for the R2c state [34]. In our sample we find a
significant deviation from such a dependence and, as a
consequence, the definition of an activation energy is no
longer possible. Figure 4(b) shows such a plot for the R2c
state, together with the activated resistance of a suitably
chosen FQHS measured in order to rule out thermometry
artifacts. Our data suggest that nonactivated behavior
might be an inherent property of the RIQHSs. The peak
in the RxxðTÞj�¼fixed curves could be due to interpenetrating
RIQHS, a collective low T insulator and the high T clas-
sical electron fluid. In such an interpretation the nonacti-
vated behavior seen in Fig. 4(b) is a consequence of the
coexistence of these two phases.
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