369 research outputs found

    Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms

    Full text link
    We report an experimental investigation of electromagnetically induced transparency in a multi-level cascade system of cold atoms. The absorption spectral profiles of the probe light in the multi-level cascade system were observed in cold Rb-85 atoms confined in a magneto-optical trap, and the dependence of the spectral profile on the intensity of the coupling laser was investigated. The experimental measurements agree with the theoretical calculations based on the density matrix equations of the rubidium cascade system.Comment: 9 pages, 5 figure

    Effects of climatically-modulated changes in solar radiation and wind speed on spring phytoplankton community dynamics in Lake Taihu, China

    Get PDF
    Many studies have focused on the interactive effects of temperature increases due to global warming and nutrient enrichment on phytoplankton communities. Recently, non-temperature effects of climate change (e.g., decreases in wind speed and increases in solar radiation) on large lakes have received increasing attention. To evaluate the relative contributions of both temperature and non-temperature effects on phytoplankton communities in a large eutrophic subtropical shallow lake, we analyzed long-term monitoring data from Lake Taihu, China from 1997 to 2016. Results showed that Lake Taihu's spring phytoplankton biovolume and composition changed dramatically over this time frame, with a change in dominant species. Stepwise multiple linear regression models indicated that spring phytoplankton biovolume was strongly influenced by total phosphorus (TP), light condition, wind speed and total nitrogen (TN) (radj 2= 0.8, p < 0.01). Partial redundancy analysis (pRDA) showed that light condition accounted for the greatest variation of phytoplankton community composition, followed by TP and wind speed, as well as the interactions between TP and wind speed. Our study points to the additional importance of non-temperature effects of climate change on phytoplankton community dynamics in Lake Taihu

    A parametric integer programming algorithm for bilevel mixed integer programs

    Get PDF
    We consider discrete bilevel optimization problems where the follower solves an integer program with a fixed number of variables. Using recent results in parametric integer programming, we present polynomial time algorithms for pure and mixed integer bilevel problems. For the mixed integer case where the leader's variables are continuous, our algorithm also detects whether the infimum cost fails to be attained, a difficulty that has been identified but not directly addressed in the literature. In this case it yields a ``better than fully polynomial time'' approximation scheme with running time polynomial in the logarithm of the relative precision. For the pure integer case where the leader's variables are integer, and hence optimal solutions are guaranteed to exist, we present two algorithms which run in polynomial time when the total number of variables is fixed.Comment: 11 page

    The phase relation between sunspot numbers and soft X-ray flares

    Full text link
    To better understand long-term flare activity, we present a statistical study on soft X-ray flares from May 1976 to May 2008. It is found that the smoothed monthly peak fluxes of C-class, M-class, and X-class flares have a very noticeable time lag of 13, 8, and 8 months in cycle 21 respectively with respect to the smoothed monthly sunspot numbers. There is no time lag between the sunspot numbers and M-class flares in cycle 22. However, there is a one-month time lag for C-class flares and a one-month time lead for X-class flares with regard to sunspot numbers in cycle 22. For cycle 23, the smoothed monthly peak fluxes of C-class, M-class, and X-class flares have a very noticeable time lag of one month, 5 months, and 21 months respectively with respect to sunspot numbers. If we take the three types of flares together, the smoothed monthly peak fluxes of soft X-ray flares have a time lag of 9 months in cycle 21, no time lag in cycle 22 and a characteristic time lag of 5 months in cycle 23 with respect to the smoothed monthly sunspot numbers. Furthermore, the correlation coefficients of the smoothed monthly peak fluxes of M-class and X-class flares and the smoothed monthly sunspot numbers are higher in cycle 22 than those in cycles 21 and 23. The correlation coefficients between the three kinds of soft X-ray flares in cycle 22 are higher than those in cycles 21 and 23. These findings may be instructive in predicting C-class, M-class, and X-class flares regarding sunspot numbers in the next cycle and the physical processes of energy storage and dissipation in the corona.Comment: 8 pages, 3 figures, Accepted for publication in Astrophysics & Space Scienc

    Critical Casimir amplitudes for nn-component Ï•4\phi^4 models with O(n)-symmetry breaking quadratic boundary terms

    Full text link
    Euclidean nn-component ϕ4\phi^4 theories whose Hamiltonians are O(n) symmetric except for quadratic symmetry breaking boundary terms are studied in films of thickness LL. The boundary terms imply the Robin boundary conditions ∂nϕα=c˚α(j)ϕα\partial_n\phi_\alpha =\mathring{c}^{(j)}_\alpha \phi_\alpha at the boundary planes Bj=1,2\mathfrak{B}_{j=1,2} at z=0z=0 and z=Lz=L. Particular attention is paid to the cases in which mjm_j of the nn variables c˚α(j)\mathring{c}^{(j)}_\alpha take the special value c˚mj-sp\mathring{c}_{m_j\text{-sp}} corresponding to critical enhancement while the remaining ones are subcritically enhanced. Under these conditions, the semi-infinite system bounded by Bj\mathfrak{B}_j has a multicritical point, called mjm_j-special, at which an O(mj)O(m_j) symmetric critical surface phase coexists with the O(n) symmetric bulk phase, provided dd is sufficiently large. The LL-dependent part of the reduced free energy per area behaves as ΔC/Ld−1\Delta_C/L^{d-1} as L→∞L\to\infty at the bulk critical point. The Casimir amplitudes ΔC\Delta_C are determined for small ϵ=4−d\epsilon=4-d in the general case where mc,cm_{c,c} components ϕα\phi_\alpha are critically enhanced at both boundary planes, mc,D+mD,cm_{c,D} + m_{D,c} components are enhanced at one plane but satisfy asymptotic Dirichlet boundary conditions at the respective other, and the remaining mD,Dm_{D,D} components satisfy asymptotic Dirichlet boundary conditions at both Bj\mathfrak{B}_j. Whenever mc,c>0m_{c,c}>0, these expansions involve integer and fractional powers ϵk/2\epsilon^{k/2} with k≥3k\ge 3 (mod logarithms). Results to O(ϵ3/2)O(\epsilon^{3/2}) for general values of mc,cm_{c,c}, mc,D+mD,cm_{c,D}+m_{D,c}, and mD,Dm_{D,D} are used to estimate the ΔC\Delta_C of 3D Heisenberg systems with surface spin anisotropies when (mc,c,mc,D+mD,c)=(1,0)(m_{c,c}, m_{c,D}+ m_{D,c}) = (1,0), (0,1)(0,1), and (1,1)(1,1).Comment: Latex source file with 5 eps files; version with minor amendments and corrected typo

    Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes

    Get PDF
    Surface wind speed has declined significantly globally. However, the response of aquatic systems to decreasing wind speeds has received little attention. We examined the effects of a long-term decrease in wind speed on shallow, eutrophic Lake Taihu, China's third largest lake, by combining high-frequency monitoring, long-term meteorological and water quality data with short-term laboratory sediment nutrient release experiments. The annual mean wind speed showed a significant decreasing trend and the maximum continuous days with wind speed <3 m/s increased significantly from 1996 to 2017. The high-frequency monitoring data showed that bottom water hypoxia occurred occasionally in summer and autumn. The water quality data combined with the experimental results suggest that lower wind speed and longer low wind duration can enhance the release of phosphorus (P) from the sediments and increase nitrogen (N) losses, likely via denitrification, because a longer stability period leads to lower dissolved oxygen concentrations near the lake bottom. The results of Bayesian functional Linear regression with Sparse Step functions (Bliss) indicated that wind speed during spring and summer strongly affected chlorophyll a (Chla) concentrations in the summer by enhancing the release of nutrients from the sediments. The results of the structural equation models indicated that declined wind speed might increase phytoplankton biomass (as Chla) by altering nutrient availability. Increasing water temperatures and decreasing wind speeds synergistically enhance water column stability, which may offset some of the immediate benefits of reductions in external nutrient loading by enhancing internal loading. Given predicted global change, it will become increasingly important to reduce the external nutrient loading for overall improvement of water quality in this and other shallow eutrophic lakes

    Photospheric Magnetic Field: Relationship Between North-South Asymmetry and Flux Imbalance

    Full text link
    Photospheric magnetic fields were studied using the Kitt Peak synoptic maps for 1976-2003. Only strong magnetic fields (B>100 G) of the equatorial region were taken into account. The north-south asymmetry of the magnetic fluxes was considered as well as the imbalance between positive and negative fluxes. The north-south asymmetry displays a regular alternation of the dominant hemisphere during the solar cycle: the northern hemisphere dominated in the ascending phase, the southern one in the descending phase during Solar Cycles 21-23. The sign of the imbalance did not change during the 11 years from one polar-field reversal to the next and always coincided with the sign of the Sun's polar magnetic field in the northern hemisphere. The dominant sign of leading sunspots in one of the hemispheres determines the sign of the magnetic-flux imbalance. The sign of the north-south asymmetry of the magnetic fluxes and the sign of the imbalance of the positive and the negative fluxes are related to the quarter of the 22-year magnetic cycle where the magnetic configuration of the Sun remains constant (from the minimum where the sunspot sign changes according to Hale's law to the magnetic-field reversal and from the reversal to the minimum). The sign of the north-south asymmetry for the time interval considered was determined by the phase of the 11-year cycle (before or after the reversal); the sign of the imbalance of the positive and the negative fluxes depends on both the phase of the 11-year cycle and on the parity of the solar cycle. The results obtained demonstrate the connection of the magnetic fields in active regions with the Sun's polar magnetic field in the northern hemisphere.Comment: 24 pages, 12 figures, 2 table

    Magnetic reversal processes and critical thickness in FePt/{\alpha}-Fe/FePt trilayers

    Full text link
    Magnetic reversal processes of a FePt/{\alpha}-Fe/FePt trilayer system with in-plane easy axes have been investigated within a micromagnetic approach. It is found that the magnetic reversal process consists of three steps: nucleation of a prototype of domain wall in the soft phase, the evolution as well as the motion of the domain wall from the soft to the hard phase and finally, the magnetic reversal of the hard phase. For small soft layer thickness Ls, the three steps are reduced to one single step, where the magnetizations in the two phases reverse simultaneously and the hysteresis loops are square with nucleation as the coercivity mechanism. As Ls increases, both nucleation and pinning fields decrease. In the meantime, the single-step reversal expands to a standard three-step one and the coercivity mechanism changes from nucleation to pinning. The critical thickness where the coercivity mechanism alters, could be derived analytically, which is found to be inversely proportional to the square root of the crystalline anisotropy of the hard phase. Further increase of Ls leads to the change of the coercivity mechanism from pinning to nucleation.Comment: 21 pages, 5 figures, pdf file, figures include

    Extreme Climate Anomalies Enhancing Cyanobacterial Blooms in Eutrophic Lake Taihu, China

    Get PDF
    Climate warming in combination with nutrient enrichment can greatly promote phytoplankton proliferation and blooms in eutrophic waters. Lake Taihu, China, is a large, shallow and eutrophic system. Since 2007, this lake has experienced extensive nutrient input reductions aimed at controlling cyanobacterial blooms. However, intense cyanobacterial blooms have persisted through 2017 with a record-setting bloom occurring in May 2017. Causal analysis suggested that this bloom was sygenerically driven by high external loading from flooding in 2016 in the Taihu catchment and a notable warmer winter during 2016/2017. High precipitation during 2016 was associated with a strong 2015/2016 El Niño in combination with the joint effects of Atlantic Multi-decadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), while persistent warmth during 2016/2017 was strongly related to warm phases of AMO and PDO. The 2017 blooms elevated water column pH and led to dissolved oxygen depletion near the sediment, both of which mobilized phosphorus from the sediment to overlying water, further promoting cyanobacterial blooms. Our finding indicates that regional climate anomalies exacerbated eutrophication via a positive feedback mechanism, by intensifying internal nutrient cycling and aggravating cyanobacterial blooms. In light of global expansion of eutrophication and blooms, especially in large, shallow and eutrophic lakes, these regional effects of climate anomalies are nested within larger scale global warming predicted to continue in the foreseeable future

    Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts

    Get PDF
    With the expansion of urban, industry, and agriculture after World War II, eutrophication firstly emerged as a major water quality threat in small water bodies. As the increasing magnitudes and scales of nutrient pollution and habitat alteration, many of the world’s large lakes exhibit symptoms of eutrophication, e.g., toxic cyanobacterial blooms, deoxygenation, and habitat loss. These symptoms were noted in shallow large lakes such as Okeechobee and Winnebago (USA), Winnipeg (Canada), Peipsi (Estonia), Balaton (Hungry), Chaohu and Taihu (China), Kasumigaura (Japan); in shallow parts of large lakes including Lakes Champlain, Ontario, and Erie (Canada/USA), Huron (USA), Maracaibo (Venezuela), Victoria (Africa); and in segments of immense water bodies such as Tanganyika (Africa) (Table S1 online). These large aquatic ecosystems pose a tremendous challenge from mitigation and restoration perspectives
    • …
    corecore