1,049 research outputs found

    Preserving Context Privacy in Distributed Hash Table Wireless Sensor Networks.

    Get PDF
    Wireless Sensor Networks (WSN) are often deployed in hostile or difficult scenarios, such as military battlefields and disaster recovery, where it is crucial for the network to be highly fault tolerant, scalable and decentralized. For this reason, peer-to-peer primitives such as Distributed Hash Table (DHT), which can greatly enhance the scalability and resilience of a network, are increasingly being introduced in the design of WSN's. Securing the communication within the WSN is also imperative in hostile settings. In particular, context information, such as the network topology and the location and identity of base stations (which collect data gathered by the sensors and are a central point of failure) can be protected using traffic encryption and anonymous routing. In this paper, we propose a protocol achieving a modified version of onion routing over wireless sensor networks based on the DHT paradigm. The protocol prevents adversaries from learning the network topology using traffic analysis, and therefore preserves the context privacy of the network. Furthermore, the proposed scheme is designed to minimize the computational burden and power usage of the nodes, through a novel partitioning scheme and route selection algorithm

    Evo-devo of human adolescence: beyond disease models of early puberty

    Get PDF
    Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research

    Decision making under incompleteness based on soft set theory

    Get PDF
    [EN]Decision making with complete and accurate information is ideal but infrequent. Unfortunately, in most cases the available infor- mation is vague, imprecise, uncertain or unknown. The theory of soft sets provides an appropriate framework for decision making that may be used to deal with uncertain decisions. The aim of this paper is to propose and analyze an effective algorithm for multiple attribute decision-making based on soft set theory in an incomplete information environment, when the distribution of incomplete data is unknown. This procedure provides an accurate solution through a combinatorial study of possible cases in the unknown data. Our theoretical development is complemented by practical examples that show the feasibility and implementability of this algorithm. Moreover, we review recent research on decision making from the standpoint of the theory of soft sets under incomplete information

    The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement

    Get PDF
    Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis

    Influence of ARHGEF3 and RHOA Knockdown on ACTA2 and Other Genes in Osteoblasts and Osteoclasts

    Get PDF
    Osteoporosis is a common bone disease that has a strong genetic component. Genome-wide linkage studies have identified the chromosomal region 3p14-p22 as a quantitative trait locus for bone mineral density (BMD). We have previously identified associations between variation in two related genes located in 3p14-p22, ARHGEF3 and RHOA, and BMD in women. In this study we performed knockdown of these genes using small interfering RNA (siRNA) in human osteoblast-like and osteoclast-like cells in culture, with subsequent microarray analysis to identify genes differentially regulated from a list of 264 candidate genes. Validation of selected findings was then carried out in additional human cell lines/cultures using quantitative real-time PCR (qRT-PCR). The qRT-PCR results showed significant down-regulation of the ACTA2 gene, encoding the cytoskeletal protein alpha 2 actin, in response to RHOA knockdown in both osteoblast-like (P<0.001) and osteoclast-like cells (P = 0.002). RHOA knockdown also caused up-regulation of the PTH1R gene, encoding the parathyroid hormone 1 receptor, in Saos-2 osteoblast-like cells (P<0.001). Other findings included down-regulation of the TNFRSF11B gene, encoding osteoprotegerin, in response to ARHGEF3 knockdown in the Saos-2 and hFOB 1.19 osteoblast-like cells (P = 0.003– 0.02), and down-regulation of ARHGDIA, encoding the Rho GDP dissociation inhibitor alpha, in response to RHOA knockdown in osteoclast-like cells (P<0.001). These studies identify ARHGEF3 and RHOA as potential regulators of a number of genes in bone cells, including TNFRSF11B, ARHGDIA, PTH1R and ACTA2, with influences on the latter evident in both osteoblast-like and osteoclast-like cells. This adds further evidence to previous studies suggesting a role for the ARHGEF3 and RHOA genes in bone metabolism

    The more the merrier? Increasing group size may be detrimental to decision-making performance in nominal groups

    Get PDF
    <div><p>Demonstrability—the extent to which group members can recognize a correct solution to a problem—has a significant effect on group performance. However, the interplay between group size, demonstrability and performance is not well understood. This paper addresses these gaps by studying the joint effect of two factors—the difficulty of solving a problem and the difficulty of verifying the correctness of a solution—on the ability of groups of varying sizes to converge to correct solutions. Our empirical investigations use problem instances from different computational complexity classes, NP-Complete (NPC) and PSPACE-complete (PSC), that exhibit similar solution difficulty but differ in verification difficulty. Our study focuses on nominal groups to isolate the effect of problem complexity on performance. We show that NPC problems have higher demonstrability than PSC problems: participants were significantly more likely to recognize correct and incorrect solutions for NPC problems than for PSC problems. We further show that increasing the group size can actually <i>decrease</i> group performance for some problems of low demonstrability. We analytically derive the boundary that distinguishes these problems from others for which group performance monotonically improves with group size. These findings increase our understanding of the mechanisms that underlie group problem-solving processes, and can inform the design of systems and processes that would better facilitate collective decision-making.</p></div

    Generating mice with targeted mutations.

    Get PDF
    Journal ArticleMutational analysis is one of the most informative approaches available for the study of complex biological processes. It has been particularly successful in the analysis of the biology of bacteria, yeast, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Extension of this approach to the mouse, through informative, was far less successful relative to what has been achieved with these simpler model organisms. This is because it is not numerically practical in mice to use random mutagenesis to isolate mutations that affect a specified biological process of interest. Nonetheless, biological phenomena such as a sophisticated immune response, cancer, vascular disease or higher-order cognitive function, to mention just a few, must analyzed in organisms that show such phenomena, and for this reason geneticists and other researchers have turned to the mouse. Gene targeting, the means for creating mice with designed mutations in almost any gene, was developed as an alternative to the impractical use of random mutgenesis for pursing genetic analysis in the mouse. Now gene targeting has advanced the genomic manipulations possible in mice to a level that can be matched only in far simple organisms such as bacteria and yeast

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    TGFbeta induces apoptosis and EMT in primary mouse hepatocytes independently of p53, p21Cip1 or Rb status

    Get PDF
    Melville Trust for the Care and Cure of Cancer to SP and SS.Background: TGF beta has pleiotropic effects that range from regulation of proliferation and apoptosis to morphological changes and epithelial-mesenchymal transition (EMT). Some evidence suggests that these effects may be interconnected. We have recently reported that P53, P21(Cip1) and pRB, three critical regulators of the G1/S transition are variably involved in TGF beta-induced cell cycle arrest in hepatocytes. As these proteins are also involved in the regulation of apoptosis in many circumstances, we investigated their contribution to other relevant TGF beta-induced effects, namely apoptosis and EMT, and examined how the various processes were interrelated. Methods: Primary mouse hepatocytes deficient in p53, p21 and/or Rb, singly or in combination were treated with TGF beta for 24 to 96 hours. Apoptosis was quantified according to morphology and by immunostaining for cleavedcapsase 3. Epithelial and mesenchymal marker expression was studied using immunocytochemistry and real time PCR. Results: We found that TGF beta similarly induced morphological changes regardless of genotype and independently of proliferation index or sensitivity to inhibition of proliferation by TGF beta. Morphological changes were accompanied by decrease in E-cadherin and increased Snail expression but the mesenchymal markers (N-cadherin, SMA alpha and Vimentin) studied remained unchanged. TGF beta induced high levels of apoptosis in p53-/-, Rb-/-, p21(cip1)-/- and control hepatocytes although with slight differences in kinetics. This was unrelated to proliferation or changes in morphology and loss of cell-cell adhesion. However, hepatocytes deficient in both p53 and p21(cip1)were less sensitive to TGF beta-induced apoptosis. Conclusion: Although p53, p21(Cip1) and pRb are well known regulators of both proliferation and apoptosis in response to a multitude of stresses, we conclude that they are critical for TGF beta-driven inhibition of hepatocytes proliferation, but only slightly modulate TGF beta-induced apoptosis. This effect may depend on other parameters such as proliferation and the presence of other regulatory proteins as suggested by the consequences of p53, p21(Cip1) double deficiency. Similarly, p53, p21(Cip1) and pRB deficiency had no effect on the morphological changes and loss of cell adhesion which is thought to be critical for metastasis. This indicates that possible association of these genes with metastasis potential would be unlikely to involve TGF beta-induced EMT.Publisher PDFPeer reviewe
    corecore