790 research outputs found
Spontaneous charging affects the motion of sliding drops
Water drops moving on surfaces are not only an everyday phenomenon seen on windows but also form an essential part of many industrial processes. Previous understanding is that drop motion is dictated by viscous dissipation and activated dynamics at the contact line. Here we demonstrate that these two effects cannot fully explain the complex paths of sliding or impacting drops. To accurately determine the forces experienced by moving drops, we imaged their trajectory when sliding down a tilted surface, and applied the relevant equations of motion. We found that drop motion on low-permittivity substrates is substantially influenced by electrostatic forces. Our findings confirm that electrostatics must be taken into consideration for the description of the motion of water, aqueous electrolytes and ethylene glycol on hydrophobic surfaces. Our results are relevant for improving the control of drop motion in many applications, including printing, microfluidics, water management and triboelectric nanogenerators
Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features
Diffuse leptomeningeal glioneuronal tumors (DLGNT) represent rare CNS neoplasms which have been included in the 2016 update of the WHO classification. The wide spectrum of histopathological and radiological features can make this enigmatic tumor entity difficult to diagnose. In recent years, large-scale genomic and epigenomic analyses have afforded insight into key genetic alterations occurring in multiple types of brain tumors and provide unbiased, complementary tools to improve diagnostic accuracy. Through genome-wide DNA methylation screening of > 25,000 tumors, we discovered a molecularly distinct class comprising 30 tumors, mostly diagnosed histologically as DLGNTs. Copy-number profiles derived from the methylation arrays revealed unifying characteristics, including loss of chromosomal arm 1p in all cases. Furthermore, this molecular DLGNT class can be subdivided into two subgroups [DLGNT methylation class (MC)-1 and DLGNT methylation class (MC)-2], with all DLGNT-MC-2 additionally displaying a gain of chromosomal arm 1q. Co-deletion of 1p/19q, commonly seen in IDH-mutant oligodendroglioma, was frequently observed in DLGNT, especially in DLGNT-MC-1 cases. Both subgroups also had recurrent genetic alterations leading to an aberrant MAPK/ERK pathway, with KIAA1549:BRAF fusion being the most frequent event. Other alterations included fusions of NTRK1/2/3 and TRIM33:RAF1, adding up to an MAPK/ERK pathway activation identified in 80% of cases. In the DLGNT-MC-1 group, age at diagnosis was significantly lower (median 5 vs 14 years, p < 0.01) and clinical course less aggressive (5-year OS 100, vs 43% in DLGNT-MC-2). Our study proposes an additional molecular layer to the current histopathological classification of DLGNT, of particular use for cases without typical morphological or radiological characteristics, such as diffuse growth and radiologic leptomeningeal dissemination. Recurrent 1p deletion and MAPK/ERK pathway activation represent diagnostic biomarkers and therapeutic targets, respectively—laying the foundation for future clinical trials with, e.g., MEK inhibitors that may improve the clinical outcome of patients with DLGNT
On the low electron density of an atmospheric pressure radio frequency plasma
A low temperature atmospheric pressure radio frequency plasma with planar electrodes structure is studied in terms of electron density for the use in biomedical applications. In the experiment, plasma can be ignited at power of 10 W and sustained in homogeneous α mode from 10W to 30W. Gas temperature is estimated based on determination of the rotational temperature of OH radicals. OH (A2Σ+→X2Π, 0-0) band from 306-312nm is detected and compared with simulated spectrum, giving the gas temperature as low as 375 ±25K under the input power of 30W, helium flow rate of 2 SLM. Line profile analysis is adopted to characterize the Stark broadening for Hβ line, further to obtain the electron density. Since we meet a situation of low electron densit y plasma, profiles with and without consideration of fine structure components are simulated, giving the estimated electron density around 8.3×1019m-3and 8.7×1019 m-3, respectively
Shared Microexponents: A Little Shifting Goes a Long Way
This paper introduces Block Data Representations (BDR), a framework for
exploring and evaluating a wide spectrum of narrow-precision formats for deep
learning. It enables comparison of popular quantization standards, and through
BDR, new formats based on shared microexponents (MX) are identified, which
outperform other state-of-the-art quantization approaches, including
narrow-precision floating-point and block floating-point. MX utilizes multiple
levels of quantization scaling with ultra-fine scaling factors based on shared
microexponents in the hardware. The effectiveness of MX is demonstrated on
real-world models including large-scale generative pretraining and inferencing,
and production-scale recommendation systems
Efficacy and toxicity of bimodal radiotherapy in WHO grade 2 meningiomas following subtotal resection with carbon ion boost:Prospective phase 2 MARCIE trial
Background: Novel radiotherapeutic modalities using carbon ions provide an increased relative biological effectiveness (RBE) compared to photons, delivering a higher biological dose while reducing radiation exposure for adjacent organs. This prospective phase 2 trial investigated bimodal radiotherapy using photons with carbon-ion (C12)-boost in patients with WHO grade 2 meningiomas following subtotal resection (Simpson grade 4 or 5).Methods:A total of 33 patients were enrolled from July 2012 until July 2020. The study treatment comprised a C12-boost (18 Gy [RBE] in 6 fractions) applied to the macroscopic tumor in combination with photon radiotherapy (50 Gy in 25 fractions). The primary endpoint was the 3-year progression-free survival (PFS), and the secondary endpoints included overall survival, safety and treatment toxicities. Results:With a median follow-up of 42 months, the 3-year estimates of PFS, local PFS and overall survival were 80.3%, 86.7%, and 89.8%, respectively. Radiation-induced contrast enhancement (RICE) was encountered in 45%, particularly in patients with periventricularly located meningiomas. Patients exhibiting RICE were mostly either asymptomatic (40%) or presented immediate neurological and radiological improvement (47%) after the administration of corticosteroids or bevacizumab in case of radiation necrosis (3/33). Treatment-associated complications occurred in 1 patient with radiation necrosis who died due to postoperative complications after resection of radiation necrosis. The study was prematurely terminated after recruiting 33 of the planned 40 patients. Conclusions:Our study demonstrates a bimodal approach utilizing photons with C12-boost may achieve a superior local PFS to conventional photon RT, but must be balanced against the potential risks of toxicities.</p
NLRX1 Sequesters STING to Negatively Regulate the Interferon Response, Thereby Facilitating the Replication of HIV-1 and DNA Viruses
SummaryUnderstanding the negative regulators of antiviral immune responses will be critical for advancing immune-modulated antiviral strategies. NLRX1, an NLR protein that negatively regulates innate immunity, was previously identified in an unbiased siRNA screen as required for HIV infection. We find that NLRX1 depletion results in impaired nuclear import of HIV-1 DNA in human monocytic cells. Additionally, NLRX1 was observed to reduce type-I interferon (IFN-I) and cytokines in response to HIV-1 reverse-transcribed DNA. NLRX1 sequesters the DNA-sensing adaptor STING from interaction with TANK-binding kinase 1 (TBK1), which is a requisite for IFN-1 induction in response to DNA. NLRX1-deficient cells generate an amplified STING-dependent host response to cytosolic DNA, c-di-GMP, cGAMP, HIV-1, and DNA viruses. Accordingly, Nlrx1−/− mice infected with DNA viruses exhibit enhanced innate immunity and reduced viral load. Thus, NLRX1 is a negative regulator of the host innate immune response to HIV-1 and DNA viruses
Microscaling Data Formats for Deep Learning
Narrow bit-width data formats are key to reducing the computational and
storage costs of modern deep learning applications. This paper evaluates
Microscaling (MX) data formats that combine a per-block scaling factor with
narrow floating-point and integer types for individual elements. MX formats
balance the competing needs of hardware efficiency, model accuracy, and user
friction. Empirical results on over two dozen benchmarks demonstrate
practicality of MX data formats as a drop-in replacement for baseline FP32 for
AI inference and training with low user friction. We also show the first
instance of training generative language models at sub-8-bit weights,
activations, and gradients with minimal accuracy loss and no modifications to
the training recipe
Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma
PURPOSE
We sought to investigate clinical outcomes of relapsed medulloblastoma and to compare molecular features between patient-matched diagnostic and relapsed tumors.
METHODS
Children and infants enrolled on either SJMB03 (NCT00085202) or SJYC07 (NCT00602667) trials who experienced medulloblastoma relapse were analyzed for clinical outcomes, including anatomic and temporal patterns of relapse and postrelapse survival. A largely independent, paired molecular cohort was analyzed by DNA methylation array and next-generation sequencing.
RESULTS
A total of 72 of 329 (22%) SJMB03 and 52 of 79 (66%) SJYC07 patients experienced relapse with significant representation of Group 3 and wingless tumors. Although most patients exhibited some distal disease (79%), 38% of patients with sonic hedgehog tumors experienced isolated local relapse. Time to relapse and postrelapse survival varied by molecular subgroup with longer latencies for patients with Group 4 tumors. Postrelapse radiation therapy among previously nonirradiated SJYC07 patients was associated with long-term survival. Reirradiation was only temporizing for SJMB03 patients. Among 127 patients with patient-matched tumor pairs, 9 (7%) experienced subsequent nonmedulloblastoma CNS malignancies. Subgroup (96%) and subtype (80%) stabilities were largely maintained among the remainder. Rare subgroup divergence was observed from Group 4 to Group 3 tumors, which is coincident with genetic alterations involving MYC, MYCN, and FBXW7. Subgroup-specific patterns of alteration were identified for driver genes and chromosome arms.
CONCLUSION
Clinical behavior of relapsed medulloblastoma must be contextualized in terms of up-front therapies and molecular classifications. Group 4 tumors exhibit slower biological progression. Utility of radiation at relapse is dependent on patient age and prior treatments. Degree and patterns of molecular conservation at relapse vary by subgroup. Relapse tissue enables verification of molecular targets and identification of occult secondary malignancies
The He-rich core-collapse supernova 2007Y: Observations from X-ray to Radio Wavelengths
A detailed study spanning approximately a year has been conducted on the Type
Ib supernova 2007Y. Imaging was obtained from X-ray to radio wavelengths, and a
comprehensive set of multi-band (w2m2w1u'g'r'i'UBVYJHKs) light curves and
optical spectroscopy is presented. A virtually complete bolometric light curve
is derived, from which we infer a (56)Ni-mass of 0.06 M_sun. The early spectrum
strongly resembles SN 2005bf and exhibits high-velocity features of CaII and
H_alpha; during late epochs the spectrum shows evidence of a ejecta-wind
interaction. Nebular emission lines have similar widths and exhibit profiles
that indicate a lack of major asymmetry in the ejecta. Late phase spectra are
modeled with a non-LTE code, from which we find (56)Ni, O and total-ejecta
masses (excluding He) to be 0.06, 0.2 and 0.42 M_sun, respectively, below 4,500
km/s. The (56)Ni mass confirms results obtained from the bolometric light
curve. The oxygen abundance suggests the progenitor was most likely a ~3.3
M_sun He core star that evolved from a zero-age-main-sequence mass of 10-13
M_sun. The explosion energy is determined to be ~10^50 erg, and the mass-loss
rate of the progenitor is constrained from X-ray and radio observations to be
<~10^-6 M_sun/yr. SN 2007Y is among the least energetic normal Type Ib
supernovae ever studied.Comment: Corrected error in Tab. 2 & 3. Photometry has not change
Clinical outcomes and patient-matched molecular composition of relapsed medulloblastoma
© 2021 by American Society of Clinical Oncology. Creative Commons Attribution Non-Commercial No Derivatives 4.0 License: https://creativecommons.org/licenses/by-nc-nd/4.0/Purpose: We sought to investigate clinical outcomes of relapsed medulloblastoma and to compare molecular features between patient-matched diagnostic and relapsed tumors.
Methods: Children and infants enrolled on either SJMB03 (NCT00085202) or SJYC07 (NCT00602667) trials who experienced medulloblastoma relapse were analyzed for clinical outcomes, including anatomic and temporal patterns of relapse and postrelapse survival. A largely independent, paired molecular cohort was analyzed by DNA methylation array and next-generation sequencing.
Results: A total of 72 of 329 (22%) SJMB03 and 52 of 79 (66%) SJYC07 patients experienced relapse with significant representation of Group 3 and wingless tumors. Although most patients exhibited some distal disease (79%), 38% of patients with sonic hedgehog tumors experienced isolated local relapse. Time to relapse and postrelapse survival varied by molecular subgroup with longer latencies for patients with Group 4 tumors. Postrelapse radiation therapy among previously nonirradiated SJYC07 patients was associated with long-term survival. Reirradiation was only temporizing for SJMB03 patients. Among 127 patients with patient-matched tumor pairs, 9 (7%) experienced subsequent nonmedulloblastoma CNS malignancies. Subgroup (96%) and subtype (80%) stabilities were largely maintained among the remainder. Rare subgroup divergence was observed from Group 4 to Group 3 tumors, which is coincident with genetic alterations involving MYC, MYCN, and FBXW7. Subgroup-specific patterns of alteration were identified for driver genes and chromosome arms.
Conclusion: Clinical behavior of relapsed medulloblastoma must be contextualized in terms of up-front therapies and molecular classifications. Group 4 tumors exhibit slower biological progression. Utility of radiation at relapse is dependent on patient age and prior treatments. Degree and patterns of molecular conservation at relapse vary by subgroup. Relapse tissue enables verification of molecular targets and identification of occult secondary malignancies.info:eu-repo/semantics/publishedVersio
- …