71 research outputs found
Decoding Social Sentiment in DAO: A Comparative Analysis of Blockchain Governance Communities
Blockchain technology is leading a revolutionary transformation across
diverse industries, with effective governance standing as a critical
determinant for the success and sustainability of blockchain projects.
Community forums, pivotal in engaging decentralized autonomous organizations
(DAOs), wield a substantial impact on blockchain governance decisions.
Concurrently, Natural Language Processing (NLP), particularly sentiment
analysis, provides powerful insights from textual data. While prior research
has explored the potential of NLP tools in social media sentiment analysis, a
gap persists in understanding the sentiment landscape of blockchain governance
communities. The evolving discourse and sentiment dynamics on the forums of top
DAOs remain largely unknown. This paper delves deep into the evolving discourse
and sentiment dynamics on the public forums of leading DeFi projects -- Aave,
Uniswap, Curve Dao, Aragon, Yearn.finance, Merit Circle, and Balancer --
placing a primary focus on discussions related to governance issues. Despite
differing activity patterns, participants across these decentralized
communities consistently express positive sentiments in their Discord
discussions, indicating optimism towards governance decisions. Additionally,
our research suggests a potential interplay between discussion intensity and
sentiment dynamics, indicating that higher discussion volumes may contribute to
more stable and positive emotions. The insights gained from this study are
valuable for decision-makers in blockchain governance, underscoring the pivotal
role of sentiment analysis in interpreting community emotions and its evolving
impact on the landscape of blockchain governance. This research significantly
contributes to the interdisciplinary exploration of the intersection of
blockchain and society, with a specific emphasis on the decentralized
blockchain governance ecosystem
"Centralized or Decentralized?": Concerns and Value Judgments of Stakeholders in the Non-Fungible Tokens (NFTs) Market
Non-fungible tokens (NFTs) are decentralized digital tokens to represent the
unique ownership of items. Recently, NFTs have been gaining popularity and at
the same time bringing up issues, such as scams, racism, and sexism.
Decentralization, a key attribute of NFT, contributes to some of the issues
that are easier to regulate under centralized schemes, which are intentionally
left out of the NFT marketplace. In this work, we delved into this
centralization-decentralization dilemma in the NFT space through mixed
quantitative and qualitative methods. Centralization-decentralization dilemma
is the dilemma caused by the conflict between the slogan of decentralization
and the interests of stakeholders. We first analyzed over 30,000 NFT-related
tweets to obtain a high-level understanding of stakeholders' concerns in the
NFT space. We then interviewed 15 NFT stakeholders (both creators and
collectors) to obtain their in-depth insights into these concerns and potential
solutions. Our findings identify concerning issues among users: financial
scams, counterfeit NFTs, hacking, and unethical NFTs. We further reflected on
the centralization-decentralization dilemma drawing upon the perspectives of
the stakeholders in the interviews. Finally, we gave some inferences to solve
the centralization-decentralization dilemma in the NFT market and thought about
the future of NFT and decentralization.Comment: Accepted by CSCW 202
Recommended from our members
Influence of a biofilm bioreactor on water quality and microbial communities in a hypereutrophic urban river.
Biofilms play an important role in degradation, transformation and assimilation of anthropogenic pollutants in aquatic ecosystems. In this study, we assembled a tubular bioreactor containing a biofilm substrate and aeration device, which was introduced into mesocosms to explore the effects of bioreactor on physicochemical and microbial characteristics of a hypereutrophic urban river. The biofilm bioreactor greatly improved water quality, especially by decreasing dissolved inorganic nitrogen (DIN) concentrations, suggesting that biofilms were the major sites of nitrification and denitrification with an oxygen concentration gradient. The biofilm bioreactor increased the abundance of planktonic bacteria, whereas diversity of the planktonic microbial community decreased. Sequencing revealed that Proteobacteria, Bacteroidetes, Planctomycetes, and Actinobacteria were the four predominant phyla in the planktonic microbial community, and the presence of the biofilm bioreactor increased the relative abundance of Proteobacteria. Variations in microbial communities were most strongly affected by the presence of the biofilm bioreactor, as indicated by principal component analysis (PCA) and redundancy analysis (RDA). This study provides valuable insights into changes in ecological characteristics associated with self-purification processes in hypereutrophic urban rivers, and may be of important for the application of biofilm bioreactor in natural urban river
Patterns and drivers of prokaryotic communities in thermokarst lake water across Northern Hemisphere
13 páginas.- 5 figuras.- 81referencias.Aim: The formation of thermokarst lakes could make a large amount of carbon accessible to microbial degradation, potentially intensifying the permafrost carbon-climate feedback via carbon dioxide/methane emissions. Because of their diverse functional roles, prokaryotes could strongly mediate biogeochemical cycles in thermokarst lakes. However, little is known about the large-scale patterns and drivers of these communities. Location: Permafrost regions in the Northern Hemisphere. Time period: Present day. Major taxa studied: Prokaryotes. Methods: Based on a combination of large-scale measurements on the Tibetan Plateau and data syntheses in pan-Arctic regions, we constructed a comprehensive dataset of 16S rRNA sequences from 258 thermokarst lakes across Northern Hemisphere permafrost regions. We also used the local contributions to beta diversity (LCBD) to characterize the variance of prokaryotic species composition and screened underlying drivers by conducting a random forest modelling analysis. Results: Prokaryotes in thermokarst lake water were dominated by the orders Burkholderiales, Micrococcales, Flavobacteriales and Frankiales. The relative abundance of dominant taxa was positively associated with dissolved organic matter (DOM) properties, especially for the chromophoric/aromatic compounds. Microbial structure differed between high-altitude and high-latitude thermokarst lakes, with the dominance of Flavobacterium in high-altitude lakes, and the enrichment of Polynucleobacter in high-latitude lakes. More importantly, climatic variables were among the main drivers shaping the large-scale variation of prokaryotic communities. Specifically, mean annual precipitation was the best predictor for prokaryotic beta diversity across the Northern Hemisphere, as well as in the high-altitude permafrost regions, while mean annual air temperature played a key role in the high-latitude thermokarst lakes. Main conclusions: Our findings demonstrate significant associations between dominant taxa and DOM properties, as well as the important role of climatic factors in affecting prokaryotic communities. These findings suggest that climatic change may alter DOM conditions and induce dynamics in prokaryotic communities of thermokarst lake water in the Northern Hemisphere. © 2023 John Wiley & Sons Ltd.This work was supported by the National Key Research and Development Program of China (2022YFF0801903), National Natural Science Foundation of China (31988102, and 31825006), and Tencent Foundation through the XPLORER PRIZE. M.D‐B. acknowledges support from TED2021‐130908B‐C41/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR and from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020‐115813RA‐I00 funded by MCIN/AEI/10.13039/501100011033.Peer reviewe
Deciphering the immunological and prognostic features of bladder cancer through platinum-resistance-related genes analysis and identifying potential therapeutic target P4HB
ObjectivesTo identify the molecular subtypes and develop a scoring system for the tumor immune microenvironment (TIME) and prognostic features of bladder cancer (BLCA) based on the platinum-resistance-related (PRR) genes analysis while identifying P4HB as a potential therapeutic target.MethodsIn this study, we analyzed gene expression data and clinical information of 594 BLCA samples. We used unsupervised clustering to identify molecular subtypes based on the expression levels of PRR genes. Functional and pathway enrichment analyses were performed to understand the biological activities of these subtypes. We also assessed the TIME and developed a prognostic signature and scoring system. Moreover, we analyzed the efficacy of immune checkpoint inhibitors. Then we conducted real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) experiments to detect the expression level of prolyl 4-hydroxylase subunit beta (P4HB) in BLCA cell lines. Transfection of small interference ribonucleic acid (siRNA) was performed in 5637 and EJ cells to knock down P4HB, and the impact of P4HB on cellular functions was evaluated through wound-healing and transwell assays. Finally, siRNA transfection of P4HB was performed in the cisplatin-resistant T24 cell to assess its impact on the sensitivity of BLCA to platinum-based chemotherapy drugs.ResultsIn a cohort of 594 BLCA samples (TCGA-BLCA, n=406; GSE13507, n=188), 846 PRR-associated genes were identified by intersecting BLCA expression data from TCGA and GEO databases with the PRR genes from the HGSOC-Platinum database. Univariate Cox regression analysis revealed 264 PRR genes linked to BLCA prognosis. We identified three molecular subtypes (Cluster A-C) and the PRR scoring system based on PRR genes. Cluster C exhibited a better prognosis and lower immune cell infiltration compared to the other Clusters A and B. The high PRR score group was significantly associated with an immunosuppressive tumor microenvironment, poor clinical-pathological features, and a poor prognosis. Furthermore, the high PRR group showed higher expression of immune checkpoint molecules and a poorer response to immune checkpoint inhibitors than the low PRR group. The key PRR gene P4HB was highly expressed in BLCA cell lines, and cellular functional experiments in vitro indicate that P4HB may be an important factor influencing BLCA migration and invasion.ConclusionOur study demonstrates that the PRR signatures are significantly associated with clinical-pathological features, the TIME, and prognostic features. The key PRR gene, P4HB, s a biomarker for the individualized treatment of BLCA patients
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Baichuan 2: Open Large-scale Language Models
Large language models (LLMs) have demonstrated remarkable performance on a
variety of natural language tasks based on just a few examples of natural
language instructions, reducing the need for extensive feature engineering.
However, most powerful LLMs are closed-source or limited in their capability
for languages other than English. In this technical report, we present Baichuan
2, a series of large-scale multilingual language models containing 7 billion
and 13 billion parameters, trained from scratch, on 2.6 trillion tokens.
Baichuan 2 matches or outperforms other open-source models of similar size on
public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan
2 excels in vertical domains such as medicine and law. We will release all
pre-training model checkpoints to benefit the research community in better
understanding the training dynamics of Baichuan 2.Comment: Baichuan 2 technical report. Github:
https://github.com/baichuan-inc/Baichuan
Association Between Cerebral Hypoperfusion and Cognitive Impairment in Patients With Chronic Vertebra-Basilar Stenosis
Objective: This study aimed to investigate the association between cognitive impairment and cerebral haemodynamic changes in patients with chronic vertebra-basilar (VB) stenosis.Methods: Patients with severe posterior circulation VB stenosis and infarction or a history of infarction for more than 2 weeks from January 2014 to January 2015 were enrolled (n = 96). They were divided into three groups, namely, the computed tomography perfusion (CTP) normal group, the CTP compensated group, and the CTP decompensated group. Cognitive function was assessed using a validated Chinese version of the Mini-Mental State Examination (MMSE), the Frontal Assessment Battery (FAB), and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Regression models were used to identify independent risk factors for cognitive impairment.Results: The MMSE and FAB scores of patients in the CTP decompensated group were significantly lower than those of patients in the CTP normal and CTP compensated groups (all p < 0.05). The RBANS total and its domain scores, including immediate memory, visual acuity, and delayed memory, in the CTP compensated and CTP decompensated groups were significantly lower than those in the CTP normal group (all p < 0.05). Multiple regression analyses showed that CTP compensation, CTP decompensation, severe VB tandem stenosis, and multiple infarctions were independent risk factors for cognitive impairment.Conclusions: Low perfusion caused by severe VB stenosis can lead to extensive cognitive impairments in areas such as immediate memory, visual span, and delayed memory
The Ets Transcription Factor GABP Is a Component of the Hippo Pathway Essential for Growth and Antioxidant Defense
这是周大旺教授继2009年首次发现了Hippo信号通路在哺乳动物中控制器官大小及肿瘤发生具有重要作用后的又一重大研究成果,该研究系统阐述了 YAP基因在转录调控水平上的的调控机理,进一步完善了人们对Hippo信号通路的认识,也为由YAP调控异常所引发的癌症提供了一个潜在的治疗靶点。
该论文的第一作者为博士生吴黉坦和硕士生肖玉波和张世浩, 通讯作者是周大旺教授和陈兰芬副教授,该工作是与厦门市中医院、中山医院和医学高等专科学校等单位合作完成的。周大旺教授是中央首批“青年千人计划”入选者并获得国家首批“优秀青年科学基金”资助。The transcriptional coactivator Yes-associated protein (YAP) plays an important role in organ-size control and tumorigenesis. However, how Yap gene expression is regulated remains unknown. This study shows that the Ets family member GABP binds to the Yap promoter and activates YAP transcription. The depletion of GABP downregulates YAP, resulting in a G1/S cell-cycle block and increased cell death, both of which are substantially rescued by reconstituting YAP. GABP can be inactivated by oxidative mechanisms, and acetaminophen-induced glutathione depletion inhibits GABP transcriptional activity and depletes YAP. In contrast, activating YAP by deleting Mst1/Mst2 strongly protects against acetaminophen-induced liver injury. Similar to its effects on YAP, Hippo signaling inhibits GABP transcriptional activity through several mechanisms. In human liver cancers, enhanced YAP expression is correlated with increased nuclear expression of GABP. Therefore, we conclude that GABP is an activator of Yap gene expression and a potential therapeutic target for cancers driven by YAP
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
- …