14 research outputs found

    May Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension

    Get PDF
    Aims Raised blood pressure (BP) is the biggest contributor to mortality and disease burden worldwide and fewer than half of those with hypertension are aware of it. May Measurement Month (MMM) is a global campaign set up in 2017, to raise awareness of high BP and as a pragmatic solution to a lack of formal screening worldwide. The 2018 campaign was expanded, aiming to include more participants and countries. Methods and results Eighty-nine countries participated in MMM 2018. Volunteers (≥18 years) were recruited through opportunistic sampling at a variety of screening sites. Each participant had three BP measurements and completed a questionnaire on demographic, lifestyle, and environmental factors. Hypertension was defined as a systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, or taking antihypertensive medication. In total, 74.9% of screenees provided three BP readings. Multiple imputation using chained equations was used to impute missing readings. 1 504 963 individuals (mean age 45.3 years; 52.4% female) were screened. After multiple imputation, 502 079 (33.4%) individuals had hypertension, of whom 59.5% were aware of their diagnosis and 55.3% were taking antihypertensive medication. Of those on medication, 60.0% were controlled and of all hypertensives, 33.2% were controlled. We detected 224 285 individuals with untreated hypertension and 111 214 individuals with inadequately treated (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg) hypertension. Conclusion May Measurement Month expanded significantly compared with 2017, including more participants in more countries. The campaign identified over 335 000 adults with untreated or inadequately treated hypertension. In the absence of systematic screening programmes, MMM was effective at raising awareness at least among these individuals at risk

    Mechanisms of Triptolide-Induced Hepatotoxicity and Protective Effect of Combined Use of Isoliquiritigenin: Possible Roles of Nrf2 and Hepatic Transporters

    No full text
    Triptolide (TP), the main bioactive component of Tripterygium wilfordii Hook F, can cause severe hepatotoxicity. Isoliquiritigenin (ISL) has been reported to be able to protect against TP-induced liver injury, but the mechanisms are not fully elucidated. This study aims to explore the role of nuclear transcription factor E2-related factor 2 (Nrf2) and hepatic transporters in TP-induced hepatotoxicity and the reversal protective effect of ISL. TP treatment caused both cytotoxicity in L02 hepatocytes and acute liver injury in mice. Particularly, TP led to the disorder of bile acid (BA) profiles in mice livers. Combined treatment of TP with ISL effectively alleviated TP-induced hepatotoxicity. Furthermore, ISL pretreatment enhanced Nrf2 expressions and nuclear accumulations and its downstream NAD(P)H: quinine oxidoreductase 1 (NQO1) expression. Expressions of hepatic P-gp, MRP2, MRP4, bile salt export pump, and OATP2 were also induced. In addition, in vitro transport assays identified that neither was TP exported by MRP2, OATP1B1, or OATP1B3, nor did TP influence the transport activities of P-gp or MRP2. All these results indicate that ISL may reduce the hepatic oxidative stress and hepatic accumulations of both endogenous BAs and exogenous TP as well as its metabolites by enhancing the expressions of Nrf2, NQO1, and hepatic influx and efflux transporters. Effects of TP on hepatic transporters are mainly at the transcriptional levels, and changes of hepatic BA profiles are very important in the mechanisms of TP-induced hepatotoxicity

    Synergistic integration of MXene nanostructures into electrospun fibers for advanced biomedical engineering applications

    No full text
    MXene-based architectures have paved the way in various fields, particularly in healthcare area, owing to their remarkable physiochemical and electromagnetic characteristics. Moreover, the modification of MXene structures and their combination with polymeric networks have gained considerable prominence to further develop their features. The combination of electrospun fibers with MXenes would be promising in this regard since electrospinning is a well-established technique that is now being directed toward commercial biomedical applications. The introduction of MXenes into electrospun fibrous frameworks has highlighted outcomes in various biomedical applications, including cancer therapy, controlled drug delivery, antimicrobial targets, sensors, and tissue engineering. Correspondingly, this review describes the employed strategies for the preparation of electrospun configurations in tandem with MXene nanostructures with remarkable characteristics. Next, the advantages of MXene-decorated electrospun fibers for use in biomedical applications are comprehensively discussed. According to the investigations, rich surface functional groups, hydrophilicity, large surface area, photothermal features, and antimicrobial and antibacterial activities of MXenes could synergize the performance of electrospun layers to engineer versatile biomedical targets. Moreover, the future of this path is clarified to combat the challenges related to the electrospun fibers decorated with MXene nanosheets
    corecore