165 research outputs found

    The rain forest is a human creation.

    Get PDF
    The Amazon rain forest was, before the Europeans came, as cultivated as forests anywhere else in the world. It was not 'virgin'. The native people still living within the forest are remnants descended from highly structured societies with suitably developed agriculture and food systems. A vast number of foods including guaranå, açaí and manioc (above) have been cultivated for thousands of years. This revolutionises understanding of the nature and value of Amazonia, the imperative need to protect and strengthen its own identity, and to learn yet again that in agro-ecology is the salvation of the planet

    <i>Polylepis</i> woodland dynamics during the last 20,000 years

    Get PDF
    AimTo determine the palaeoecological influences of climate change and human land use on the spatial distribution patterns of Polylepis woodlands in the Andes.LocationTropical Andes above 2,900 m between 2°S and 18°S of latitude.MethodsPollen and charcoal data were gathered from 13 Andean lake sediment records and were rescaled by the maximum value in each site. The rescaled pollen data were used to estimate a mean abundance and coefficient of variation to show woodland expansions/contractions and woodland fragmentation over the last 20,000 years. The rescaled charcoal was displayed as a 200‐year moving median using 500‐year bins to infer the influence of fire on woodland dynamics at landscape scale. Pollen and charcoal were compared with speleothem, clastic flux and archaeological data to assess the influence of moisture balance, glacial activity and human impact on the spatial distribution of Polylepis woodlands.ResultsWoodland expansion and fire were correlated with precipitation changes and glacier dynamics from c. 20 to 6 kcal BP (thousands of calibrated years before present). Charcoal abundances between 20 and 12 kcal BP were less common than from 12 kcal BP to modern. However, human‐induced fires were unlikely to be the main cause of a woodland decline centred at 11 kcal BP, as woodlands recovered from 10.5 to 9.5 kcal BP (about twofold increase). Charcoal peaks analogous to those that induced the woodland decline at 11 kcal BP were commonplace post‐9.5 kcal BP but did not trigger an equivalent woodland contraction. An increase in the coefficient of variation after c. 5.5 kcal BP suggests enhanced fragmentation and coincided with the shift from logistic to exponential growth of human populations. Over the last 1,000 years, Polylepis became hyper‐fragmented with over half of sites losing Polylepis from the record and with coefficients of variation paralleling those of glacial times.Main conclusionsPolylepis woodlands formed naturally patchy woodlands, rather than a continuous vegetation belt, prior to human occupation in the Andes. The main factors controlling pre‐human woodland dynamics were precipitation and landscape heterogeneity. Human activity led to hyper‐fragmentation during the last c. 1,000 years

    Hunting and fishing focus among the Miskito Indians, eastern Nicaragua

    Full text link
    The amounts of native animals taken in hunting and fishing by Amerind peoples are almost unknown. The interrelationships of cultural and ecological systems determine to a large extent hunting and fishing returns, focus, and strategies. This study presents data obtained in a coastal Miskito Indian village in eastern Nicaragua. Measurements were made of meat yields by species and of the time and distance inputs involved in securing fish and game. Hunting and fishing focus and strategies are adaptive mechanisms enabling the Miskito to achieve high and dependable returns from a limited number of species. Several factors are examined which influence hunting and fishing focus: dietary preferences and prohibitions, costs involved, differential productivity and dependability of particular species, seasonality and scheduling, and the impact of cash market opportunities for faunal resources. Under the impetus of population growth and rising aspirations, the Miskito's efforts to secure increasing numbers of animals for both subsistence and market are leading to severe pressures on selected species and to cultural and ecological disruptions .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44475/1/10745_2005_Article_BF01791280.pd

    Persistent Place-Making in Prehistory: the Creation, Maintenance, and Transformation of an Epipalaeolithic Landscape

    Get PDF
    Most archaeological projects today integrate, at least to some degree, how past people engaged with their surroundings, including both how they strategized resource use, organized technological production, or scheduled movements within a physical environment, as well as how they constructed cosmologies around or created symbolic connections to places in the landscape. However, there are a multitude of ways in which archaeologists approach the creation, maintenance, and transformation of human-landscape interrelationships. This paper explores some of these approaches for reconstructing the Epipalaeolithic (ca. 23,000–11,500&nbsp;years BP) landscape of Southwest Asia, using macro- and microscale geoarchaeological approaches to examine how everyday practices leave traces of human-landscape interactions in northern and eastern Jordan. The case studies presented here demonstrate that these Epipalaeolithic groups engaged in complex and far-reaching social landscapes. Examination of the Early and Middle Epipalaeolithic (EP) highlights that the notion of “Neolithization” is somewhat misleading as many of the features we use to define this transition were already well-established patterns of behavior by the Neolithic. Instead, these features and practices were enacted within a hunter-gatherer world and worldview

    Legacy of Amazonian Dark Earth soils on forest structure and species composition

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Aim: Amazonian forests predominantly grow on highly weathered and nutrient poor soils. Anthropogenically enriched Amazonian Dark Earths (ADE), traditionally known as Terra Preta de Índio, were formed by pre-Columbian populations. ADE soils are characterized by increased fertility and have continued to be exploited following European colonization. Here, we evaluated the legacy of land-use and soil enrichment on the composition and structure in ADE and non-ADE (NDE) forests. Location: Eastern and southern Amazonia. Time period: Pre-Columbia – 2014. Methods: We sampled nine pairs of ADE and adjacent NDE forest plots in eastern and southern Amazonia. In each plot, we collected soil samples at 0–10 and 10–20 cm depth and measured stem diameter, height, and identified all individual woody plants (palms, trees and lianas) with diameter ≥ 10 cm. We compared soil physicochemical properties, vegetation diversity, floristic composition, aboveground biomass, and percentage of useful species. Results: In the nine paired plots, soil fertility was significantly higher in ADE soil. We sampled 4,191 individual woody plants representing 404 species and 65 families. The floristic composition of ADE and NDE forests differed significantly at both local and regional levels. In southern Amazonia, ADE forests had, on average, higher aboveground biomass than other forests of the region, while in eastern Amazonia, biomass was similar to that of NDE forests. Species richness of both forest types did not differ and was within the range of existing regional studies. The differences in composition between large and small diameter tree recruits may indicate long-term recovery and residual effects from historical land-use. Additionally, the proportion of edible species tended to be higher in the ADE forests of eastern and southern Amazonia. Main conclusions: The marked differences in soil fertility, floristic composition and aboveground biomass between ADE and NDE forests are consistent with a small-scale long-term land-use legacy and a regional increase in tree diversity

    Historical Human Footprint on Modern Tree Species Composition in the Purus-Madeira Interfluve, Central Amazonia

    Get PDF
    Background: Native Amazonian populations managed forest resources in numerous ways, often creating oligarchic forests dominated by useful trees. The scale and spatial distribution of forest modification beyond pre-Columbian settlements is still unknown, although recent studies propose that human impact away from rivers was minimal. We tested the hypothesis that past human management of the useful tree community decreases with distance from rivers. Methodology/Principal Findings: In six sites, we inventoried trees and palms with DBH≥10 cm and collected soil for charcoal analysis; we also mapped archaeological evidence around the sites. To quantify forest manipulation, we measured the relative abundance, richness and basal area of useful trees and palms. We found a strong negative exponential relationship between forest manipulation and distance to large rivers. Plots located from 10 to 20 km from a main river had 20-40% useful arboreal species, plots between 20 and 40 km had 12-23%, plots more than 40 km had less than 15%. Soil charcoal abundance was high in the two sites closest to secondary rivers, suggesting past agricultural practices. The shortest distance between archaeological evidence and plots was found in sites near rivers. Conclusions/Significance: These results strongly suggest that past forest manipulation was not limited to the pre-Columbian settlements along major rivers, but extended over interfluvial areas considered to be primary forest today. The sustainable use of Amazonian forests will be most effective if it considers the degree of past landscape domestication, as human-modified landscapes concentrate useful plants for human sustainable use and management today. © 2012 Levis et al

    Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs

    Get PDF
    Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts

    Measuring local depletion of terrestrial game vertebrates by central-place hunters in rural Amazonia

    Get PDF
    The degree to which terrestrial vertebrate populations are depleted in tropical forests occupied by human communities has been the subject of an intense polarising debate that has important conservation implications. Conservation ecologists and practitioners are divided over the extent to which community-based subsistence offtake is compatible with ecologically functional populations of tropical forest game species. To quantify depletion envelopes of forest vertebrates around human communities, we deployed a total of 383 camera trap stations and 78 quantitative interviews to survey the peri-community areas controlled by 60 semi-subsistence communities over a combined area of over 3.2 million hectares in the Médio Juruá and Uatumã regions of Central-Western Brazilian Amazonia. Our results largely conform with prior evidence that hunting large-bodied vertebrates reduces wildlife populations near settlements, such that they are only found at a distance to settlements where they are hunted less frequently. Camera trap data suggest that a select few harvest-sensitive species, including lowland tapir, are either repelled or depleted by human communities. Nocturnal and cathemeral species were detected relatively more frequently in disturbed areas close to communities, but individual species did not necessarily shift their activity patterns. Group biomass of all species was depressed in the wider neighbourhood of urban areas rather than communities. Interview data suggest that species traits, especially group size and body mass, mediate these relationships. Large-bodied, large-group-living species are detected farther from communities as reported by experienced informants. Long-established communities in our study regions have not “emptied” the surrounding forest. Low human population density and low hunting offtake due to abundant sources of alternative aquatic protein, suggest that these communities represent a best-case scenario for sustainable hunting of wildlife for food, thereby providing a conservative assessment of game depletion. Given this ‘best-case’ camera trap and interview-based evidence for hunting depletion, regions with higher human population densities, external trade in wildlife and limited access to alternative protein will likely exhibit more severe depletion
    • …
    corecore