32 research outputs found

    Generation and Characterization of Fmr1 Knockout Zebrafish

    Get PDF
    Fragile X syndrome (FXS) is one of the most common known causes of inherited mental retardation. The gene mutated in FXS is named FMR1, and is well conserved from human to Drosophila. In order to generate a genetic tool to study FMR1 function during vertebrate development, we generated two mutant alleles of the fmr1 gene in zebrafish. Both alleles produce no detectable Fmr protein, and produce viable and fertile progeny with lack of obvious phenotypic features. This is in sharp contrast to published results based on morpholino mediated knock-down of fmr1, reporting defects in craniofacial development and neuronal branching in embryos. These phenotypes we specifically addressed in our knock-out animals, revealing no significant deviations from wild-type animals, suggesting that the published morpholino based fmr1 phenotypes are potential experimental artifacts. Therefore, their relation to fmr1 biology is questionable and morpholino induced fmr1 phenotypes should be avoided in screens for potential drugs suitable for the treatment of FXS. Importantly, a true genetic zebrafish model is now available which can be used to study FXS and to derive potential drugs for FXS treatment

    Inhibition of methyltransferase activity of enhancer of zeste 2 leads to enhanced lipid accumulation and altered chromatin status in zebrafish

    Get PDF
    BACKGROUND: Recent studies indicate that exposure to environmental chemicals may increase susceptibility to developing metabolic diseases. This susceptibility may in part be caused by changes to the epigenetic landscape which consequently affect gene expression and lead to changes in lipid metabolism. The epigenetic modifier enhancer of zeste 2 (Ezh2) is a histone H3K27 methyltransferase implicated to play a role in lipid metabolism and adipogenesis. In this study, we used the zebrafish (Danio rerio) to investigate the role of Ezh2 on lipid metabolism and chromatin status following developmental exposure to the Ezh1/2 inhibitor PF-06726304 acetate. We used the environmental chemical tributyltin (TBT) as a positive control, as this chemical is known to act on lipid metabolism via EZH-mediated pathways in mammals. RESULTS: Zebrafish embryos (0-5 days post-fertilization, dpf) exposed to non-toxic concentrations of PF-06726304 acetate (5 μM) and TBT (1 nM) exhibited increased lipid accumulation. Changes in chromatin were analyzed by the assay for transposase-accessible chromatin sequencing (ATAC-seq) at 50% epiboly (5.5 hpf). We observed 349 altered chromatin regions, predominantly located at H3K27me3 loci and mostly more open chromatin in the exposed samples. Genes associated to these loci were linked to metabolic pathways. In addition, a selection of genes involved in lipid homeostasis, adipogenesis and genes specifically targeted by PF-06726304 acetate via altered chromatin accessibility were differentially expressed after TBT and PF-06726304 acetate exposure at 5 dpf, but not at 50% epiboly stage. One gene, cebpa, did not show a change in chromatin, but did show a change in gene expression at 5 dpf. Interestingly, underlying H3K27me3 marks were significantly decreased at this locus at 50% epiboly. CONCLUSIONS: Here, we show for the first time the applicability of ATAC-seq as a tool to investigate toxicological responses in zebrafish. Our analysis indicates that Ezh2 inhibition leads to a partial primed state of chromatin linked to metabolic pathways which results in gene expression changes later in development, leading to enhanced lipid accumulation. Although ATAC-seq seems promising, our in-depth assessment of the cebpa locus indicates that we need to consider underlying epigenetic marks as well.</p

    Hen1 is required for oocyte development and piRNA stability in zebrafish

    Full text link
    Piwi-interacting RNAs (piRNAs) are germ line-specific small RNA molecules that have a function in genome defence and germ cell development. They associate with a specific class of Argonaute proteins, named Piwi, and function through an RNA interference-like mechanism. piRNAs carry a 2′-O-methyl modification at their 3′ end, which is added by the Hen1 enzyme. We show that zebrafish hen1 is specifically expressed in germ cells and is essential for maintaining a female germ line, whereas it is dispensable in the testis. Hen1 protein localizes to nuage through its C-terminal domain, but is not required for nuage formation. In hen1 mutant testes, piRNAs become uridylated and adenylated. Uridylation frequency is highest on retro-transposon-derived piRNAs and is accompanied by decreased piRNA levels and mild derepression of transposon transcripts. Altogether, our data suggest the existence of a uridylation-mediated 3′–5′ exonuclease activity acting on piRNAs in zebrafish germ cells, which is counteracted by nuage-bound Hen1 protein. This system discriminates between piRNA targets and is required for ovary development and fully efficient transposon silencing

    Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy

    Get PDF
    Background and aim: A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. Methods: Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. Results: The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. Conclusions: AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization

    Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy

    Get PDF
    Background and aim: A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. Methods: Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. Results: The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. Conclusions: AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization

    Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway-1

    No full text
    Use (A,B). At 72 hpf, mutants exhibit an eye phenotype where the pigmented epithelium is extended into the diencephalon. The similar phenotype described for the mutant is weaker compared to the mutant (C-E). The expression level of , a general readout for Hh activity, shows a mild increase in the mutant compared to wild type (F-H). The mutant shows a severely increased level of , where wild types, heterozygotes and mutants can be distinguished based on levels (I-K). Additional to the difference in the strength of the eye phenotype, the activation of the pathway is significantly higher in mutants compared to mutants. An increased expression level of confirms an activation of the Hh pathway in the mutant (L-N).<p><b>Copyright information:</b></p><p>Taken from "Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway"</p><p>http://www.biomedcentral.com/1471-213X/8/15</p><p>BMC Developmental Biology 2008;8():15-15.</p><p>Published online 19 Feb 2008</p><p>PMCID:PMC2275722.</p><p></p

    Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway-3

    No full text
    cells and expressing slow muscle precursors are expanded at 19 hpf (A-D). At 19 hpf, expression is highly induced in the mutant, suggesting that the myotome is mainly developing slow muscle type precursors (E,F). Anteroposterior patterning of the somites is lost in segmented somites, since the posterior somite marker (G,H) and anterior somite marker (I,J) are strongly reduced or not detectable at 19 hpf. expression in 11 somite stage wildtype (K,L) and double mutant embryos (M,N). L and N are higher magnification of relevant areas of K and M, respectively. In wild type, is expressed at higher levels in the posterior of the somites during their formation, in more posterior (younger) segments this appears to include the adaxial cells (*). In more anterior (more mature) somites more anterior adaxial cells appear to show higher levels of labeling (arrowheads). In double mutant embryos (N) a "salt and pepper" type staining suggests that anterior and posterior cells are intermingled. Additionally, necessary for proper segmentation is present in presomitic mesoderm but failed to be expressed in the posterior part of segmented somites (O,P), suggesting that somite formation and A/P patterning of formed somites are genetically uncoupled processes.<p><b>Copyright information:</b></p><p>Taken from "Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway"</p><p>http://www.biomedcentral.com/1471-213X/8/15</p><p>BMC Developmental Biology 2008;8():15-15.</p><p>Published online 19 Feb 2008</p><p>PMCID:PMC2275722.</p><p></p

    Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway-2

    No full text
    Becomes straight (A,B), which is a typical consequence of increased activity of the Hh pathway. At 24 hpf, double mutants do not develop a lens but the primitive eye field is still present (C,D). At 48 hpf the eyes are completely absent. Additionally, reduced pigmentation, an absence of the nose, and an underdeveloped ear can be observed at 48 hpf (E,F). Expression levels of confirms that the pathway becomes more activated upon losing wild type alleles of or , with the highest expression in the mutant, mainly in the anterior brain structures (G-J).<p><b>Copyright information:</b></p><p>Taken from "Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway"</p><p>http://www.biomedcentral.com/1471-213X/8/15</p><p>BMC Developmental Biology 2008;8():15-15.</p><p>Published online 19 Feb 2008</p><p>PMCID:PMC2275722.</p><p></p
    corecore