14 research outputs found

    Various aspects of piscine toxicology

    Get PDF
    In opposition to toxicology of mammals piscine toxicology is closely connected with the conditions of external environment. The aquatic environment is necessary for embryonic development and after hatching during short or long-lasting larval period of most fish species. An aquatic environment is polluted by many industrial and agricultural wastes. Ammonia as a toxic and common compound in water have negative influence for aquaculture especially in intensive fish culture, recirculation system and hatchery facilities. Acute toxicity of ammonia was investigated in carp Cyprinus carpio L. and developmental stages of chub Squalius cephalus L. Changes in the peripheral blood characteristics and hemopoietic tissues of carp occurred after exposition to ammonia in acute tests and 3, 5 and 10 weeks sublethal concetration. The observed increase of the concentration of most amino acids in fish intoxicated with amonia suggests that the process reflects detoxication of ammonia which takes place both in the brain and muscles after 3 weeks of exposition. Phenol intoxication tests induced considerable unfavorable changes in the blood and dystrophic and necrobiotic lesions in tissues of fish leading to dysfunction both hemopoietic and reproductive processes

    Cytogenetic and histological studies of the brook trout, Salvelinus fontinalis (Mitchill), and the Arctic char, S-alpinus (L.) hybrids

    Get PDF
    Although brook trout and the Arctic char hybrids are able to reproduce, individuals with decreased fertility or even fish that are unable to produce any gametes have been also described. Abnormal gonadal development and disturbances in the gamete production in the char hybrid offspring may be triggered by the odd chromosome number and disturbances in their pairing during meiosis. To verify this hypothesis, cytogenetic examination and the gonadal histology analysis of the brook trout x Arctic char hybrids were carried out. Diploid chromosome number in the studied char (F-1) hybrids varied from 82 to 84 (FN = 99-102). Among 28 hybrids, 12 males, three females, nine intersex individuals and two sterile specimens were described. In the case of two individuals, gonads were not found. Diploid chromosome numbers in the males and intersex individuals varied from 82 to 84. Chromosome numbers in the females were 82 and 83 chromosomes. Two sterile fish exhibited karyotypes composed of 82 and 84 chromosomes. Predominance of the ovarian component in the intersex gonads and gonadal sex ratio distortion towards the males suggested hybrid females had problems with gonadal differentiation. However, the lack of the clear relationship between chromosome number and gonadal development in the studied hybrids did not support our hypothesis that odd chromosome number may be responsible for such reproductive disturbances in the hybrid individuals. We have presumed that sterility and intersexual development of the gonads may be caused by interactions between brook trout and Arctic char genes on the sex chromosomes and autosomes rather than unpairing of the parental chromosomes.Polish National Science Center (NCN) [N N311 525240]info:eu-repo/semantics/publishedVersio
    corecore