2,289 research outputs found
Application of Wireless Sensor Networks for Indoor Temperature Regulation
International audienceWireless sensor networks take a major part in our everyday lives by enhancing systems for home automation, healthcare, temperature control, energy consumption monitoring, and so forth. In this paper we focus on a system used for temperature regulation for residential, educational, industrial, and commercial premises, and so forth. We propose a framework for indoor temperature regulation and optimization using wireless sensor networks based on ZigBee platform. This paper considers architectural design of the system, as well as implementation guidelines. The proposed system favors methods that provide energy savings by reducing the amount of data transmissions through the network. Furthermore, the framework explores techniques for localization, such that the location of the nodes can be used by algorithms that regulate temperature settings
Reduction of seafood processing wastewater using technologies enhanced by swim–bed technology
The increasing growth of the seafood processing industries considerably requires more industrial process activities and water consumption. It is estimated that approximately 10–40 m3 of wastewater is generated from those industries for processing one-tonne of raw materials. Due to limitations and regulations in natural resources utilization, a suitable and systematic wastewater treatment plant is very important to meet rigorous discharge standards. As a result of food waste biodegradability, the biological treatment and some extent of swim-bed technology, including a novel acryl-fibre (biofilm) material might be used effectively to meet the effluent discharge criteria. This chapter aims to develop understanding on current problems and production of the seafood wastewater regarding treatment efficiency and methods of treatment
Natural coagulates for wastewater treatment; a review for application and mechanism
The increase of water demand and wastewater generation is among the global concerns in the world. The less effective management of water sources leads to serious consequences, the direct disposal of untreated wastewater is associated with the environmental pollution, elimination of aquatic life and the spread of deadly epidemics. The flocculation process is one of the most important stages in water and wastewater treatment plants, wherein this phase the plankton, colloidal particles, and pollutants are precipitated and removed. Two major types of coagulants are used in the flocculation process included the chemical and natural coagulants. Many studies have been performed to optimize the flocculation process while most of these studies have confirmed the hazardous effects of chemical coagulants utilization on the ecosystem. This chapter reviews a summary of the coagulation/flocculation processes using natural coagulants as well as reviews one of the most effective natural methods of water and wastewater treatment
A Framework for Sustainable Design of Algal Biorefineries: Economic Aspects and Life Cycle Analysis
Products from the high temperature pyrolysis of RDF at slow and rapid heating rates
The high-temperature pyrolysis behaviour of a sample of refuse derived fuel (RDF) as a model of municipal solid waste (MSW) was investigated in a horizontal tubular reactor between 700 and 900 °C, at varying heating rates, and at an extended vapour residence time. Experiments were designed to evaluate the influence of process conditions on gas yields as well as gas and oil compositions. Pyrolysis of RDF at 800 °C and at rapid heating rate resulted in the gas yield with the highest CV of 24.8 MJ m-3 while pyrolysis to 900 °C at the rapid heating rate generated the highest gas yield but with a lower CV of 21.3 MJ m-3. A comparison of the effect of heating rates on oil products revealed that the oil from slow pyrolysis, contained higher yields of more oxygenates, alkanes (C8-C39) and alkenes (C8-C20), while the oil from rapid pyrolysis contained more aromatics, possibly due to the promotion of Diels-Alder-type reactions
Potential applications of nanotechnology in thermochemical conversion of microalgal biomass
The rapid decrease in fossil reserves has significantly increased the demand of renewable and sustainable energy fuel resources. Fluctuating fuel prices and significant greenhouse gas (GHG) emission levels have been key impediments associated with the production and utilization of nonrenewable fossil fuels. This has resulted in escalating interests to develop new and improve inexpensive carbon neutral energy technologies to meet future demands. Various process options to produce a variety of biofuels including biodiesel, bioethanol, biohydrogen, bio-oil, and biogas have been explored as an alternative to fossil fuels. The renewable, biodegradable, and nontoxic nature of biofuels make them appealing as alternative fuels. Biofuels can be produced from various renewable resources. Among these renewable resources, algae appear to be promising in delivering sustainable energy options. Algae have a high carbon dioxide (CO2) capturing efficiency, rapid growth rate, high biomass productivity, and the ability to grow in non-potable water. For algal biomass, the two main conversion pathways used to produce biofuel include biochemical and thermochemical conversions. Algal biofuel production is, however, challenged with process scalability for high conversion rates and high energy demands for biomass harvesting. This affects the viable achievement of industrial-scale bioprocess conversion under optimum economy. Although algal biofuels have the potential to provide a sustainable fuel for future, active research aimed at improving upstream and downstream technologies is critical. New technologies and improved systems focused on photobioreactor design, cultivation optimization, culture dewatering, and biofuel production are required to minimize the drawbacks associated with existing methods. Nanotechnology has the potential to address some of the upstream and downstream challenges associated with the development of algal biofuels. It can be applied to improve system design, cultivation, dewatering, biomass characterization, and biofuel conversion. This chapter discusses thermochemical conversion of microalgal biomass with recent advances in the application of nanotechnology to enhance the development of biofuels from algae. Nanotechnology has proven to improve the performance of existing technologies used in thermochemical treatment and conversion of biomass. The different bioprocess aspects, such as reactor design and operation, analytical techniques, and experimental validation of kinetic studies, to provide insights into the application of nanotechnology for enhanced algal biofuel production are addressed
Steam reforming of phenol as biomass tar model compound over Ni/Al₂O₃ catalyst
Catalytic steam reforming of phenol over Ni/Al₂O₃ catalyst with 10 wt% of Ni loading was carried out in a fixed bed reactor. The effect of temperature (650–800 °C), reaction time (20–80 min) and catalyst amount (0–2 g corresponding to 0–4.5 gcat h gphenol−1) on carbon conversion, H2 potential and catalyst deactivation was studied. High efficiency of Ni/Al₂O₃ catalyst in steam reforming of phenol is observed at 750 °C for a reaction time of 60 min when 1.5 g of catalyst (3.4 gcat h gphenol−1) is used, with carbon conversion and H2 potential being 81 and 59%, respectively. An increase in temperature enhances phenol reforming reaction as well as coke gasification, minimizing its deposition over the catalyst. However, at high temperatures (800 °C) an increase in Ni crystal size is observed indicating catalyst irreversible deactivation by sintering. As catalyst time on stream is increased the coke amount deposited over the catalyst increases, but no differences in Ni crystal size are observed. An increase in catalyst amount from 0 to 1.5 g increases H2 potential, but no further improvement is observed above 1.5 g. It is not observed significant catalyst deactivation by coke deposition, with the coke amount deposited over the catalyst being lower than 5% in all the runs
Continuous catalytic upgrading of ethanol to n-butanol and >C-4 products over Cu/CeO2 catalysts in supercritical CO2
n-Butanol (BuOH) often has superior properties as a bio-fuel compared to ethanol (EtOH). However finding sustainable sources of BuOH is proving difficult. In this paper, direct production of BuOH from EtOH is compared over custom-synthesized six Cu catalysts, supported on different solid acids. These catalysts were tested in a continuous flow supercritical CO2 (scCO2) reactor, and were found to catalyse the dehydrogenation, aldol condensation and hydrogenation steps of the so-called Guerbet reaction converting EtOH to BuOH. BuOH yields and selectivities were significantly different over the four catalysts. Cu on high surface area CeO2 showed the best activity for BuOH formation, with yields above 30% achieved with good selectivity. In addition high pressure CO2 is shown to have a positive effect on the reaction, possibly due to the redox cycle of Ce2O3 and CeO2
The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate
Rice straw hemicellulosic hydrolysate was used as fermentation medium for ethanol production by Pichia stipitis NRRL Y-7124. Shaking bath experiments were initially performed aiming to establish the best initial xylose concentration to be used in this bioconversion process. In the sequence, assays were carried out under different agitation (100 to 200 rpm) and aeration (V flask/V medium ratio varying from 2.5 to 5.0) conditions, and the influence of these variables on the fermentative parameters values (ethanol yield factor, Y P/S; cell yield factor, Y X/S; and ethanol volumetric productivity, Q P) was investigated through a 22 full-factorial design. Initial xylose concentration of about 50 g/l was the most suitable for the development of this process, since the yeast was able to convert substrate in product with high efficiency. The factorial design assays showed a strong influence of both process variables in all the evaluated responses. The agitation and aeration increase caused a deviation in the yeast metabolism from ethanol to biomass production. The best results (Y P/S = 0.37 g/g and Q P = 0.39 g/l.h) were found when the lowest aeration (2.5 V flask/V medium ratio) and highest agitation (200 rpm) levels were employed. Under this condition, a process efficiency of 72.5% was achieved. These results demonstrated that the establishment of adequate conditions of aeration is of great relevance to improve the ethanol production from xylose by Pichia stipitis, using rice straw hemicellulosic hydrolysate as fermentation medium.The financial support from Fapesp (Brazil) is gratefully acknowledged
- …
