139 research outputs found

    Evaluation of a Parametric Approach for Estimating Potential Evapotranspiration Across Different Climates

    Get PDF
    AbstractPotential evapotranspiration (PET) is key input in water resources, agricultural and environmental modelling. For many decades, numerous approaches have been proposed for the consistent estimation of PET at several time scales of interest. The most recognized is the Penman-Monteith formula, which is yet difficult to apply in data-scarce areas, since it requires simultaneous observations of four meteorological variables (temperature, sunshine duration, humidity, wind velocity). For this reason, parsimonious models with minimum input data requirements are strongly preferred. Typically, these have been developed and tested for specific hydroclimatic conditions, but when they are applied in different regimes they provide much less reliable (and in some cases misleading) estimates. Therefore, it is essential to develop generic methods that remain parsimonious, in terms of input data and parameterization, yet they also allow for some kind of local adjustment of their parameters, through calibration. In this study we present a recent parametric formula, based on a simplified formulation of the original Penman-Monteith expression, which only requires mean daily or monthly temperature data. The method is evaluated using meteorological records from different areas worldwide, at both the daily and monthly time scales. The outcomes of this extended analysis are very encouraging, as indicated by the substantially high validation scores of the proposed approach across all examined data sets. In general, the parametric model outperforms well-established methods of the everyday practice, since it ensures optimal approximation ofpotential evapotranspiration

    Joint editorial: Invigorating hydrological research through journal publications

    Get PDF
    Editors of several journals in the field of hydrology met during the General Assembly of the European Geosciences Union – EGU in Vienna in April 2017. This event was a follow-up of similar meetings held in 2013 and 2015. These meetings enable the group of editors to review the current status of the journals and the publication process, and to share thoughts on future strategies. Journals were represented at the 2017 meeting by their editors, as shown in the list of authors. The main points on invigorating hydrological research through journal publications are communicated in this joint editorial published in the journals listed here

    Rethinking Climate, Climate Change, and Their Relationship with Water

    No full text
    We revisit the notion of climate, along with its historical evolution, tracing the origin of the modern concerns about climate. The notion (and the scientific term) of climate was established during the Greek antiquity in a geographical context and it acquired its statistical content (average weather) in modern times after meteorological measurements had become common. Yet the modern definitions of climate are seriously affected by the wrong perception of the previous two centuries that climate should regularly be constant, unless an external agent acts upon it. Therefore, we attempt to give a more rigorous definition of climate, consistent with the modern body of stochastics. We illustrate the definition by real-world data, which also exemplify the large climatic variability. Given this variability, the term “climate change” turns out to be scientifically unjustified. Specifically, it is a pleonasm as climate, like weather, has been ever-changing. Indeed, a historical investigation reveals that the aim in using that term is not scientific but political. Within the political aims, water issues have been greatly promoted by projecting future catastrophes while reversing true roles and causality directions. For this reason, we provide arguments that water is the main element that drives climate, and not the opposite

    Replacing Histogram with Smooth Empirical Probability Density Function Estimated by K-Moments

    No full text
    Whilst several methods exist to provide sample estimates of the probability distribution function at several points, for the probability density of continuous stochastic variables, only a gross representation through the histogram is typically used. It is shown that the newly introduced concept of knowable moments (K-moments) can provide smooth empirical representations of the distribution function, which in turn can yield point and interval estimates of the density function at a large number of points or even at any arbitrary point within the range of the available observations. The proposed framework is simple to apply and is illustrated with several applications for a variety of distribution functions

    Knowable Moments in Stochastics: Knowing Their Advantages

    No full text
    Knowable moments, abbreviated as K-moments, are redefined as expectations of maxima or minima of a number of stochastic variables that are a sample of the variable of interest. The new definition enables applicability of the concept to any type of variable, continuous or discrete, and generalization for transformations thereof. While K-moments share some characteristics with classical and other moments, as well as with order statistics, they also have some unique features, which make them useful in relevant applications. These include the fact that they are knowable, i.e., reliably estimated from a sample for high orders. Moreover, unlike other moment types, K-moment values can be assigned values of distribution function by making optimal use of the entire dataset. In addition, K-moments offer the unique advantage of considering the estimation bias when the data are not an independent sample but a time series from a process with dependence. Both for samples and time series, the K-moment concept offers a strategy of model fitting, including its visualization, that is not shared with other methods. This enables utilization of the highest possible moment orders, which are particularly useful in modelling extremes that are closely associated with high-order moments

    Entropy Production in Stochastics

    No full text
    While the modern definition of entropy is genuinely probabilistic, in entropy production the classical thermodynamic definition, as in heat transfer, is typically used. Here we explore the concept of entropy production within stochastics and, particularly, two forms of entropy production in logarithmic time, unconditionally (EPLT) or conditionally on the past and present having been observed (CEPLT). We study the theoretical properties of both forms, in general and in application to a broad set of stochastic processes. A main question investigated, related to model identification and fitting from data, is how to estimate the entropy production from a time series. It turns out that there is a link of the EPLT with the climacogram, and of the CEPLT with two additional tools introduced here, namely the differenced climacogram and the climacospectrum. In particular, EPLT and CEPLT are related to slopes of log-log plots of these tools, with the asymptotic slopes at the tails being most important as they justify the emergence of scaling laws of second-order characteristics of stochastic processes. As a real-world application, we use an extraordinary long time series of turbulent velocity and show how a parsimonious stochastic model can be identified and fitted using the tools developed
    • …
    corecore