4 research outputs found

    Overexpression of the p53-inducible brain-specific angiogenesis inhibitor 1 suppresses efficiently tumour angiogenesis

    Get PDF
    The brain-specific angiogenesis inhibitor 1 gene has been isolated in an attempt to find fragments with p53 ā€œfunctionalā€ binding sites. As reported herein and by others, brain-specific angiogenesis inhibitor 1 expression is present in some normal tissues, but is reduced or lost in tumour tissues. Such data and its particular structure prompted the hypothesis that brain-specific angiogenesis inhibitor 1 may act as a mediator in the local angiogenesis balance. We herein demonstrate that brain-specific angiogenesis inhibitor 1 over-expression suppresses tumour angiogenesis, delaying significantly the human tumour growth in immunodeficient mice. The inhibitory effect of brain-specific angiogenesis inhibitor 1 was documented using our intravital microscopy system, strongly implicating brain-specific angiogenesis inhibitor 1 as a mediator in the control of tumour angiogenesis. In contrast, in vitro tumour cell proliferation was not inhibited by brain-specific angiogenesis inhibitor 1 transfection, whereas some level of cytotoxicity was assessed for endothelial cells. Immunohistochemical analysis of tumour samples confirmed a reduction in the microvessel density index in brain-specific angiogenesis inhibitor 1-overexpressing tumours. At messenger level, moderate changes could be detected, involving the down-regulation of vascular endothelial growth factor and collagenase-1 expression. Furthermore, brain-specific angiogenesis inhibitor 1 expression that was lost in a selection of human cancer cell lines could be restored by wild-type p53 adenoviral transfection. Brain-specific angiogenesis inhibitor 1 should be considered for gene therapy and development of efficient drugs based on endogenous antiangiogenic molecules

    Thrombospondin-1 in Urological Cancer: Pathological Role, Clinical Significance, and Therapeutic Prospects

    Get PDF
    Angiogenesis is an important process for tumor growth and progression of various solid tumors including urological cancers. Thrombospondins (TSPs), especially TSP-1, are representative "anti"-angiogenic molecules and many studies have clarified their pathological role and clinical significance in vivo and in vitro. In fact, TSP-1 expression is associated with clinicopathological features and prognosis in many types of cancers. However, TSP-1 is a multi-functional protein and its biological activities vary according to the specific tumor environments. Consequently, there is no general agreement on its cancer-related function in urological cancers, and detailed information regarding regulative mechanisms is essential for a better understanding of its therapeutic effects and prognostic values. Various "suppressor genes" and "oncogenes" are known to be regulators and TSP-1-related factors under physiological and pathological conditions. In addition, various types of fragments derived from TSP-1 exist in a given tissue microenvironment and TSP-1 derived-peptides have specific activities. However, a detailed pathological function in human cancer tissues is not still understood. This review will focus on the pathological roles and clinical significance of TSP-1 in urological cancers, including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, special attention is paid to TSP-1-derived peptide and TSP-1-based therapy for malignancies
    corecore