622 research outputs found
Compositional characterisation of the Themis family
Context. It has recently been proposed that the surface composition of icy
main-belt asteroids (B-,C-,Cb-,Cg-,P-,and D-types) may be consistent with that
of chondritic porous interplanetary dust particles (CPIDPs). Aims. In the light
of this new association, we re-examine the surface composition of a sample of
asteroids belonging to the Themis family in order to place new constraints on
the formation and evolution of its parent body. Methods. We acquired NIR
spectral data for 15 members of the Themis family and complemented this dataset
with existing spectra in the visible and mid-infrared ranges to perform a
thorough analysis of the composition of the family. Assuming end-member
minerals and particle sizes (<2\mum) similar to those found in CPIDPs, we used
a radiative transfer code adapted for light scattering by small particles to
model the spectral properties of these asteroids. Results. Our best-matching
models indicate that most objects in our sample possess a surface composition
that is consistent with the composition of CP IDPs.We find ultra-fine grained
Fe-bearing olivine glasses to be among the dominant constituents. We further
detect the presence of minor fractions of Mg-rich crystalline silicates. The
few unsuccessfully matched asteroids may indicate the presence of interlopers
in the family or objects sampling a distinct compositional layer of the parent
body. Conclusions. The composition inferred for the Themis family members
suggests that the parent body accreted from a mixture of ice and anhydrous
silicates (mainly amorphous) and subsequently underwent limited heating. By
comparison with existing thermal models that assume a 400km diameter
progenitor, the accretion process of the Themis parent body must have occurred
relatively late (>4Myr after CAIs) so that only moderate internal heating
occurred in its interior, preventing aqueous alteration of the outer shell.Comment: 9 pages, 5 figures, accepted for publication in A&
The Compositional Structure of the Asteroid Belt
The past decade has brought major improvements in large-scale asteroid
discovery and characterization with over half a million known asteroids and
over 100,000 with some measurement of physical characterization. This explosion
of data has allowed us to create a new global picture of the Main Asteroid
Belt. Put in context with meteorite measurements and dynamical models, a new
and more complete picture of Solar System evolution has emerged. The question
has changed from "What was the original compositional gradient of the Asteroid
Belt?" to "What was the original compositional gradient of small bodies across
the entire Solar System?" No longer is the leading theory that two belts of
planetesimals are primordial, but instead those belts were formed and sculpted
through evolutionary processes after Solar System formation. This article
reviews the advancements on the fronts of asteroid compositional
characterization, meteorite measurements, and dynamical theories in the context
of the heliocentric distribution of asteroid compositions seen in the Main Belt
today. This chapter also reviews the major outstanding questions relating to
asteroid compositions and distributions and summarizes the progress and current
state of understanding of these questions to form the big picture of the
formation and evolution of asteroids in the Main Belt. Finally, we briefly
review the relevance of asteroids and their compositions in their greater
context within our Solar System and beyond.Comment: Accepted chapter in Asteroids IV in the Space Science Series to be
published Fall 201
Spectral and Spin Measurement of Two Small and Fast-Rotating Near-Earth Asteroids
In May 2012 two asteroids made near-miss "grazing" passes at distances of a
few Earth-radii: 2012 KP24 passed at nine Earth-radii and 2012 KT42 at only
three Earth-radii. The latter passed inside the orbital distance of
geosynchronous satellites. From spectral and imaging measurements using NASA's
3-m Infrared Telescope Facility (IRTF), we deduce taxonomic, rotational, and
physical properties. Their spectral characteristics are somewhat atypical among
near-Earth asteroids: C-complex for 2012 KP24 and B-type for 2012 KT42, from
which we interpret the albedos of both asteroids to be between 0.10 and 0.15
and effective diameters of 20+-2 and 6+-1 meters, respectively. Among B-type
asteroids, the spectrum of 2012 KT42 is most similar to 3200 Phaethon and 4015
Wilson-Harrington. Not only are these among the smallest asteroids spectrally
measured, we also find they are among the fastest-spinning: 2012 KP24 completes
a rotation in 2.5008+-0.0006 minutes and 2012 KT42 rotates in 3.634+-0.001
minutes.Comment: 4 pages, 3 figures, accepted for publication in Icaru
Colors and taxonomy of Centaurs and Trans-Neptunian Objects
The study of the surface properties of Centaurs and Trans-Neptunian Objects
(TNOs) provides essential information about the early conditions and evolution
of the outer Solar System. Due to the faintness of most of these distant and
icy bodies, photometry currently constitutes the best technique to survey a
statistically significant number of them. Our aim is to investigate color
properties of a large sample of minor bodies of the outer Solar System, and set
their taxonomic classification. We carried out visible and near-infrared
photometry of Centaurs and TNOs, making use, respectively, of the FORS2 and
ISAAC instruments at the Very Large Telescope (European Southern Observatory).
Using G-mode analysis, we derived taxonomic classifications according to the
Barucci et al. (2005a) system. We report photometric observations of 31
objects, 10 of them have their colors reported for the first time ever. 28
Centaurs and TNOs have been assigned to a taxon. We combined the entire sample
of 38 objects taxonomically classified in the framework of our programme (28
objects from this work; 10 objects from DeMeo et al. 2009a) with previously
classified TNOs and Centaurs, looking for correlations between taxonomy and
dynamics. We compared our photometric results to literature data, finding hints
of heterogeneity for the surfaces of 4 objects.Comment: 7 pages, 4 figures. To be published in Astronomy and Astrophysic
DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure
BACKGROUND: Epigenome-wide association studies using DNA methylation have the potential to uncover novel biomarkers and mechanisms of cardiovascular disease (CVD) risk. However, the direction of causation for these associations is not always clear, and investigations to-date have often failed to replicate at the level of individual loci. METHODS: Here, we undertook module- and region-based DNA methylation analyses of incident CVD in the Women's Health Initiative (WHI) and Framingham Heart Study Offspring Cohort (FHS) in order to find more robust epigenetic biomarkers for cardiovascular risk. We applied weighted gene correlation network analysis (WGCNA) and the Comb-p algorithm to find methylation modules and regions associated with incident CVD in the WHI dataset. RESULTS: We discovered two modules whose activation correlated with CVD risk and replicated across cohorts. One of these modules was enriched for development-related processes and overlaps strongly with epigenetic aging sites. For the other, we showed preliminary evidence for monocyte-specific effects and statistical links to cumulative exposure to traditional cardiovascular risk factors. Additionally, we found three regions (associated with the genes SLC9A1, SLC1A5, and TNRC6C) whose methylation associates with CVD risk. CONCLUSIONS: In sum, we present several epigenetic associations with incident CVD which reveal disease mechanisms related to development and monocyte biology. Furthermore, we show that epigenetic modules may act as a molecular readout of cumulative cardiovascular risk factor exposure, with implications for the improvement of clinical risk prediction.Trainee support was provided by the National Institutes of Health under award T32HL069772.S
Evolution from protoplanetary to debris discs: The transition disc around HD 166191
HD 166191 has been identified by several studies as hosting a rare and
extremely bright warm debris disc with an additional outer cool disc component.
However, an alternative interpretation is that the star hosts a disc that is
currently in transition between a full gas disc and a largely gas-free debris
disc. With the help of new optical to mid-IR spectra and Herschel imaging, we
argue that the latter interpretation is supported in several ways: i) we show
that HD 166191 is co-moving with the ~4 Myr-old Herbig Ae star HD 163296,
suggesting that the two have the same age, ii) the disc spectrum of HD 166191
is well matched by a standard radiative transfer model of a gaseous
protoplanetary disc with an inner hole, and iii) the HD 166191 mid-IR silicate
feature is more consistent with similarly primordial objects. We note some
potential issues with the debris disc interpretation that should be considered
for such extreme objects, whose lifetime at the current brightness is mush
shorter than the stellar age, or in the case of the outer component requires a
mass comparable to the solid component of the Solar nebula. These aspects
individually and collectively argue that HD 166191 is a 4-5 Myr old star that
hosts a gaseous transition disc. Though it does not argue in favour of either
scenario, we find strong evidence for 3-5 um disc variability. We place HD
166191 in context with discs at different evolutionary stages, showing that it
is a potentially important object for understanding the protoplanetary to
debris disc transition.Comment: accepted to MNRAS, fixed typos in abstract and axis labe
Safety and Efficacy of Glucomannan for Weight Loss in Overweight and Moderately Obese Adults
Background. Few safe and effective dietary supplements are available to promote weight loss. We evaluated the safety and efficacy of glucomannan, a water-soluble fiber supplement, for achieving weight loss in overweight and moderately obese individuals consuming self-selected diets. Methods. Participants were randomly assigned to take 1.33 grams of glucomannan or identically looking placebo capsules with 236.6âmL (8 ounces) of water one hour before breakfast, lunch, and dinner for 8 weeks. The primary efficacy outcome was change in body weight after 8 weeks. Other efficacy outcomes were changes in body composition, hunger/fullness, and lipid and glucose concentrations. Safety outcomes included gastrointestinal symptoms/tolerance and serum liver enzymes and creatinine levels. Results. A total of 53 participants (18â65 years of age; BMI 25â35âkg/m2) were enrolled and randomized. The two groups did not differ with respect to baseline characteristics and compliance with the study supplement. At 8 weeks, there was no significant difference between the glucomannan and placebo groups in amount of weight loss (â.40±.06 and â.43±.07, resp.) or other efficacy outcomes or in any of the safety outcomes. Conclusions. Glucomannan supplements administered over 8 weeks were well tolerated but did not promote weight loss or significantly alter body composition, hunger/fullness, or lipid and glucose parameters. This trial is registered with NCT00613600
Multiple and Fast: The Accretion of Ordinary Chondrite Parent Bodies
Although petrologic, chemical and isotopic studies of ordinary chondrites and
meteorites in general have largely helped establish a chronology of the
earliest events of planetesimal formation and their evolution, there are
several questions that cannot be resolved via laboratory measurements and/or
experiments only. Here we propose rationale for several new constraints on the
formation and evolution of ordinary chondrite parent bodies (and by extension
most planetesimals) from newly available spectral measurements and
mineralogical analysis of main belt S-type asteroids (83 objects) and
unequilibrated ordinary chondrite meteorites (53 samples). Based on the latter,
we suggest spectral data may be used to distinguish whether an ordinary
chondrite was formed near the surface or in the interior of its parent body. If
these constraints are correct, the suggested implications include that: i)
large groups of compositionally similar asteroids are a natural outcome of
planetesimal formation and, consequently, meteorites within a given class can
originate from multiple parent bodies; ii) the surfaces of large (up to ~200km)
S-type main-belt asteroids expose mostly the interiors of the primordial
bodies, a likely consequence of impacts by small asteroids (D<10km) in the
early solar system (Ciesla et al. 2013); iii) the duration of accretion of the
H chondrite parent bodies was likely short (instantaneous or in less then ~10^5
yr but certainly not as long as 1 Myr); iv) LL-like bodies formed closer to the
Sun than H-like bodies, a possible consequence of radial mixing and size
sorting of chondrules in the protoplanetary disk prior to accretion.Comment: Accepted for publication in Ap
- âŠ