176 research outputs found

    A two-step multiple-marker strategy for genome-wide association studies

    Get PDF
    Genome-wide association studies raise study-design and analytical issues that are still being debated. Among them, stands the issue of reducing the number of markers to be genotyped without loss of efficiency in identifying trait loci, which can reduce the cost of studies and minimize the multiple testing problem. With this aim, we proposed a two-step strategy based on two analytical methods suited to examine sets of markers rather than single markers: the local score, which screens the genome to select candidate regions in Step 1, and FBAT-LC, a multiple-marker family-based association test used to obtain significance levels of regions at step 2. The performance of this strategy was evaluated on all replicates of Genetic Analysis Workshop 15 Problem 3 simulated data, using the answers to that problem. Overall, seven of the nine generated trait loci were detected in at least 87% of the replicates using a framework designed to handle either association with the disease or association with the severity of disease. This multiple-marker strategy was compared to the single-marker approach. By considering regions instead of single markers, this strategy minimizes the multiple testing problem and the number of false-positive results

    Network propagation for GWAS analysis:a practical guide to leveraging molecular networks for disease gene discovery

    Get PDF
    MOTIVATION: Genome-wide association studies (GWAS) have enabled large-scale analysis of the role of genetic variants in human disease. Despite impressive methodological advances, subsequent clinical interpretation and application remains challenging when GWAS suffer from a lack of statistical power. In recent years, however, the use of information diffusion algorithms with molecular networks has led to fruitful insights on disease genes.RESULTS: We present an overview of the design choices and pitfalls that prove crucial in the application of network propagation methods to GWAS summary statistics. We highlight general trends from the literature, and present benchmark experiments to expand on these insights selecting as case study three diseases and five molecular networks. We verify that the use of gene-level scores based on GWAS P-values offers advantages over the selection of a set of 'seed' disease genes not weighted by the associated P-values if the GWAS summary statistics are of sufficient quality. Beyond that, the size and the density of the networks prove to be important factors for consideration. Finally, we explore several ensemble methods and show that combining multiple networks may improve the network propagation approach.</p

    Using an age-at-onset phenotype with interval censoring to compare methods of segregation and linkage analysis in a candidate region for elevated systolic blood pressure

    Get PDF
    BACKGROUND: Genetic studies of complex disorders such as hypertension often utilize families selected for this outcome, usually with information obtained at a single time point. Since age-at-onset for diagnosed hypertension can vary substantially between individuals, a phenotype based on long-term follow up in unselected families can yield valuable insights into this disorder for the general population. METHODS: Genetic analyses were conducted using 2884 individuals from the largest 330 families of the Framingham Heart Study. A longitudinal phenotype was constructed using the age at an examination when systolic blood pressure (SBP) first exceeds 139 mm Hg. An interval for age-at-onset was created, since the exact time of onset was unknown. Time-fixed (sex, study cohort) and time-varying (body mass index, daily cigarette and alcohol consumption) explanatory variables were included. RESULTS: Segregation analysis for a major gene effect demonstrated that the major gene effect parameter was sensitive to the choice for age-at-onset. Linkage analyses for age-at-onset were conducted using 1537 individuals in 52 families. Evidence for putative genes identified on chromosome 17 in a previous linkage study using a quantitative SBP phenotype for these data was not confirmed. CONCLUSIONS: Interval censoring for age-at-onset should not be ignored. Further research is needed to explain the inconsistent segregation results between the different age-at-onset models (regressive threshold and proportional hazards) as well as the inconsistent linkage results between the longitudinal phenotypes (age-at-onset and quantitative)

    Using eQTL weights to improve power for genome-wide association studies: a genetic study of childhood asthma

    Get PDF
    Increasing evidence suggests that single nucleotide polymorphisms (SNPs) associated with complex traits are more likely to be expression quantitative trait loci (eQTLs). Incorporating eQTL information hence has potential to increase power of genome-wide association studies (GWAS). In this paper, we propose using eQTL weights as prior information in SNP based association tests to improve test power while maintaining control of the family-wise error rate (FWER) or the false discovery rate (FDR). We apply the proposed methods to the analysis of a GWAS for childhood asthma consisting of 1296 unrelated individuals with German ancestry. The results confirm that eQTLs are enriched for previously reported asthma SNPs. We also find that some SNPs are insignificant using procedures without eQTL weighting, but become significant using eQTL-weighted Bonferroni or Benjamini–Hochberg procedures, while controlling the same FWER or FDR level. Some of these SNPs have been reported by independent studies in recent literature. The results suggest that the eQTL-weighted procedures provide a promising approach for improving power of GWAS. We also report the results of our methods applied to the large-scale European GABRIEL consortium data

    Identification of OCA2 as a novel locus for the co-morbidity of asthma-plus-eczema

    Get PDF
    Background: Numerous genes have been associated with the three most common allergic diseases (asthma, allergic rhinitis or eczema) but these genes explain only a part of the heritability. In the vast majority of genetic studies, complex phenotypes such as co- morbidity of two of these diseases, have not been considered. This may partly explain missing heritability. Objective: To identify genetic variants specifically associated with the co-morbidity of asthma-plus-eczema. Methods: We first conducted a meta-analysis of four GWAS (Genome-Wide Association Study) of the combined asthma-plus-eczema phenotype (total of 8807 European-ancestry subjects of whom 1208 subjects had both asthma and eczema). To assess whether the association with SNP(s) was specific to the co- morbidity, we also conducted a meta-analysis of homogeneity test of association according to disease status (“asthma-plus-eczema” vs. the presence of only one disease “asthma only or eczema only”). We then used a joint test by combining the two test statistics from the co-morbidity-SNP association and the phenotypic heterogeneity of SNP effect meta-analyses. Results: Seven SNPs were detected for specific association to the asthma-plus-eczema co-morbidity, two with significant and five with suggestive evidence using the joint test after correction for multiple testing. The two significant SNPs are located in the OCA2 gene (Oculocutaneous Albinism II), a new locus never detected for significant evidence of association with any allergic disease. This gene is a promising candidate gene, because of its link to skin and lung diseases, and to epithelial barrier and immune mechanisms. Conclusion: Our study underlines the importance of studying sub-phenotypes as co-morbidities to detect new susceptibility genes

    Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood

    Get PDF
    Background: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. Objective: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood.Methods: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totaling 8,273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analyzed.Results: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P=4.3x10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P&lt;5x10-6) were found at three other loci: 20p12 (rs13037508 within MACROD2; P=4.9x10-7), 14q22 (rs7493885 near NIN; P=2.9x10-6) and 2p22 (rs232542 near CYP1B1; P=4.1x10-6). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings.Conclusion and Clinical Relevance: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms

    Identification of a new locus at 16q12 associated with time-to-asthma onset

    Get PDF
    International audienceBackground: Asthma is a heterogeneous disease in which age-of-onset plays an important role.Objective: We sought to identify the genetic variants associated with time-to-asthma onset.Methods: We conducted a large-scale meta-analysis of nine genome-wide association studies of time-to-asthma onset (total of 5,462 asthmatics with a broad range of age-of-asthma onset and 8,424 controls of European ancestry) performed using survival analysis techniques.Results: We detected five regions associated with time-to-asthma onset at genome-wide significant level (P<5x10-8). We evidenced a new locus in 16q12 region (near cylindromatosis turban tumor syndrome gene (CYLD)) and confirmed four asthma risk regions: 2q12 (IL1RL1), 6p21 (HLA-DQA1), 9p24 (IL33) and 17q12-q21 (ZPBP2-GSDMA). Conditional analyses identified two distinct signals at 9p24 (both upstream of IL33) and at 17q12-q21 (near ZPBP2 and within GSDMA). These seven distinct loci explained together 6.0% of the variance in time-to-asthma onset. In addition, we showed that genetic variants at 9p24 and 17q12-q21 were strongly associated with an earlier onset of childhood asthma (P≤0.002) whereas 16q12 SNP was associated with a later asthma onset (P=0.04). A high burden of disease risk alleles at these loci was associated with earlier age-of-asthma onset (4 years versus 9-12 years, P=10-4).Conclusion: The new susceptibility region for time-to-asthma onset at 16q12 harbors variants that correlate with the expression of CYLD and NOD2 (nucleotide-binding oligomerization domain 2), two strong candidates for asthma. This study demonstrates that incorporating the variability of age-of-asthma onset in asthma modeling is a helpful approach in the search for disease susceptibility genes

    Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population

    Get PDF
    BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin

    Replication of Association between ADAM33 Polymorphisms and Psoriasis

    Get PDF
    Polymorphisms in ADAM33, the first gene identified in asthma by positional cloning, have been recently associated with psoriasis. No replication study of this association has been published so far. Data available in the French EGEA study (Epidemiological study on Genetics and Environment of Asthma, bronchial hyperresponsivensess and Atopy) give the opportunity to attempt to replicate the association between ADAM33 and psoriasis in 2002 individuals. Psoriasis (n = 150) has been assessed by questionnaire administered by an interviewer and a sub-sample of subjects with early-onset psoriasis (n = 74) has been identified based on the age of the subjects at time of interview (<40 years). Nine SNPs in ADAM33 and 11 SNPs in PSORS1 were genotyped. Association analysis was conducted by using two methods, GEE regression-based method and a likelihood-based method (LAMP program). The rs512625 SNP in ADAM33 was found associated with psoriasis at p = 0.01, the usual threshold required for replication (OR [95% CI] for heterozygotes compared to the reference group of homozygotes for the most frequent allele = 0.61 [0.42;0.89]). The rs628977 SNP, which was not in linkage disequilibrium with rs512625, was significantly associated with early-onset psoriasis (p = 0.01, OR [95% CI] for homozygotes for the minor allele compared to the reference group = 2.52 [1.31;4.86]). Adjustment for age, sex, asthma and a PSORS1 SNP associated with psoriasis in the EGEA data did not change the significance of these associations. This suggests independent effects of ADAM33 and PSORS1 on psoriasis. This is the first study that replicates an association between genetic variants in ADAM33 and psoriasis. Interestingly, the 2 ADAM33 SNPs associated with psoriasis in the present analysis were part of the 3-SNPs haplotypes showing the strongest associations in the initial study. The identification of a pleiotropic effect of ADAM33 on asthma and psoriasis may contribute to the understanding of these common immune-mediated diseases
    • …
    corecore